地球科学进展 ›› 2019, Vol. 34 ›› Issue (4): 356 -365. doi: 10.11867/j.issn.1001-8166.2019.04.0356

地理与地理信息科学 上一篇    下一篇

Noah-MP模型中积雪模拟对参数化方案的敏感性评估
尤元红 1, 2, 3( ),黄春林 1, 2( ),张莹 1, 2,侯金亮 1, 2   
  1. 1. 中国科学院西北生态环境资源研究院, 甘肃省遥感重点实验室,甘肃 兰州 730000
    2. 中国科学院西北生态环境资源研究院, 黑河遥感试验研究站,甘肃 兰州 730000
    3. 中国科学院大学,北京 100049
  • 收稿日期:2018-11-16 修回日期:2019-01-22 出版日期:2019-04-10
  • 通讯作者: 黄春林 E-mail:youyuanhong@lzb.ac.cn;huangcl@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目“联合机器学习和多尺度集合卡尔曼滤波算法的积雪数据同化方法研究”(编号:41671375)和“基于贝叶斯模型平均和遗传粒子滤波的积雪数据同化方法研究”(编号:41871251)

Sensitivity Evaluation of Snow Simulation to Multi-parameterization Schemes in the Noah-MP Model

Yuanhong You 1, 2, 3( ),Chunlin Huang 1, 2( ),Ying Zhang 1, 2,Jinliang Hou 1, 2   

  1. 1. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-11-16 Revised:2019-01-22 Online:2019-04-10 Published:2019-05-27
  • Contact: Chunlin Huang E-mail:youyuanhong@lzb.ac.cn;huangcl@lzb.ac.cn
  • About author: You Yuanhong (1990-), male, Susong County, Anhui Province, Ph.D student. Research areas include land surface simulation and data assimilation. E-mail: youyuanhong@lzb.ac.cn | You Yuanhong (1990-), male, Susong County, Anhui Province, Ph.D student. Research areas include land surface simulation and data assimilation. E-mail: youyuanhong@lzb.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study of snow data assimilation based on machine leaning and multi-scale ensemble Kalman Filter” (No. 41671375) and “Study of snow data assimilation based on Bayesian Model averaging and genetic particle filter”(No. 41871251)

针对Noah-MP模型多参数化方案、模拟结果不确定性范围难以确定的特点,选取北疆地区具有代表性的阿勒泰站气象资料作为模型驱动数据,探讨了积雪对多参数化方案的敏感性。在不考虑模型参数和驱动数据不确定性的条件下,设计了集合数为13 824的多参数化方案集合模拟试验。选用Natural selection方法对物理过程的敏感性进行分析,并在敏感性分析结果的基础上进一步讨论了模拟结果的不确定性。结果表明:积雪对地表热交换、雨雪分离、土壤温度底层边界条件和第一层积雪或土壤时间方案4个物理过程敏感;在不考虑驱动数据和模型参数不确定性的条件下,多参数化方案集合模拟试验中的不确定性主要来源于敏感物理过程。去除敏感物理过程中能够明显降低模拟性能的参数化方案后,集合模拟结果的不确定性大幅减小。最后,根据分析结果构建了该站雪深和雪水当量模拟的最优参数化方案组合。

On account of the latest community Noah land surface model with multi-parameterization (Noah-MP) schemes and its uncertainty breadth in simulation results being difficult to be determined, this study assessed the sensitivity of snow to physics options using meteorological data from the Altay Station in northern Xinjiang. The Noah-MP physics ensemble simulation with the total number of 13 824 was designed without the consideration of the uncertainties of forcing data and parameters. The natural selection approach was used to analyze the sensitivity of physical processes. Based on the results of sensitivity analysis, the uncertainty of ensemble simulation results was further discussed. The results showed that snow was sensitive to the physical processes of surface-layer exchange coefficient, partitioning precipitation into rainfall and snowfall, lower boundary condition of soil temperature, and first-layer snow or soil temperature time scheme; Uncertainties in multi-parameterization ensemble simulation experiments were mainly from sensitive physical processes under the condition of disregarding uncertainties of forcing data and parameters. After removing the parameterization schemes that notably reduced simulation performance in sensitive physical processes, the uncertainty breadth in ensemble simulations decreased significantly. Finally, an optimal combination group of parameterization schemes for this station was configured.

中图分类号: 

图1 北疆高程与阿勒泰站点位置
Fig.1 Terrain height of the Northern Xinjiang and the location of the Altay site
表1 Noah-MP模型中 11个物理过程对应的参数化方案
Table 1 The available options for eleven physical processes in Noah-MP
表2 数值试验设计
Table 2 Numerical experiments setup
图2 默认参数化方案组合雪深和雪水当量模拟结果与观测比较
Fig.2 Variation of snow depth and snow water equivalent, observed and simulated, by default parameterization scheme combination
图3 雪深和雪水当量集合模拟试验中同一物理过程的不同参数化方案在best members(0~1)和worst members(-1~0)中的选择频率
Fig.3 The selected frequency of different schemes of each physical process for snow depth and snow water equivalent, respectively, in the best members (0~1) or worst members (-1~0) in ensemble experiments
图4 全部参数化方案组合和敏感物理过程参数化方案组合的不确定范围比较
Fig.4 Comparison of uncertainty breadth in total parameterization combination to sensitivity parameterization combination
图5 最敏感参数化方案组合的不确定性范围比较
Fig.5 Comparison the uncertainty breadth of the most sensitivity parameterization combination
1 Walsh J E , Jasperson W H , Ross B . Influence of snow cover and soil moisture on monthly air temperature [J]. Monthly Weather Review, 1985, 113(5): 756-768.
2 Baenett T P , Dumenil L , Schlese U , et al . The effect of Eurasian snow cover on regional and global climate variations [J]. Journal of the Atmospheric Sciences, 1989, 46(5): 661-685.
3 Vernekar A D , Zhou J , Shukla J . The effect of Eurasian snow cover on the Indian monsoon [J]. Journal of Climate, 1995, 8(2): 248-266.
4 Xiao Xiongxin , Zhang Tingjun . Passive microwave remote sensing of snow depth and snow water equivalent: Overview [J]. Advances in Earth Science, 2018, 33(6): 590-605.
肖雄新,张廷军 . 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展,2018,33(6):590-605.
5 Wang Jian , Che Tao , Li Zhen , et al . Investigation on snow characteristics and their distribution in China [J]. Advances in Earth Science, 2018, 33(1): 12-26.
王建,车涛,李震,等 . 中国积雪特性及分布调查[J]. 地球科学进展,2018,33(1):12-26.
6 Verbunt M , Gurtz J , Jasper K , et al . The hydrological role of snow and glaciers in alpine river basins and their distributed modeling [J]. Journal of Hydrology, 2003, 282(14): 36-55.
7 Parrish M A , Moradkhani H , DeChant C M . Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation [J]. Water Resources Research, 2012, 48: W03519.
8 Zhang G , Chen F , Gan Y J . Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign [J]. Journal of Geophysical Research Atmospheres, 2016, 121(16): 9 576-9 596.
9 Yang Z L , Niu G Y , Mitchell K E . The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over globalriver basins [J]. Journal of Geophysical Research Atmospheres, 2011, 116: D12110.
10 Gao Y H , Li K , Chen F , et al . Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau [J]. Journal of Geophysical Research Atmospheres, 2015, 120(18): 9 258-9 278.
11 Cai X T , Yang Z L , David C H , et al . Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin[J]. Journal of Geophysical Research—Atmospheres, 2014, 119(1): 23-38.
12 Niu G Y , Yang Z L , Mitchell E , et al . The community Noah land surface model with multi-parameterization options (Noah-MP):1. Model description andevaluation with local-scale measurements [J]. Journal of Geophysical Research Atmospheres, 2011, 116(D12). DOI:10.1029/2010JD015140.
doi: 10.1029/2010JD015140    
13 Zheng D H , Van Der Velde R , Su Z B , et al . Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river [J]. Journal of Geophysical Research Atmospheres, 2017, 122(3): 1 488-1 504.
14 Fang Y H , Zhang X N , Niu G Y , et al . Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the Upper Changjiang River Basin [J]. Water, 2017, 9(3): 165.
15 Ma Yuan , Li Hongyi , Zhang Pu , et al . The improvement of using gamma-ray detect snow water equivalent [J]. Remote Sensing Technology and Application, 2017, 32(1): 57-63.
马媛,李弘毅,张璞,等 .利用伽马射线探测雪水当量方法的改进[J]. 遥感技术与应用, 2017, 32(1): 57-63.
16 Chen F , Mitchell K , Schaake J , et al . Modeling of land-surface evaporation by four schemes and comparison with FIFE observations [J]. Journal of Geophysical Research—Atmospheres, 1996, 101(D3): 7 251-7 268.
17 Chen F , Janjic Z , Mitchell K . Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP mesoscale Eta numerical model [J]. Boundary-Layer Meteorology, 1997, 85(3): 391-421.
18 Chen F , Dudhia J . Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity [J]. Monthly Weather Review, 2001, 129(4): 569-585.
19 Ek M B , Mitchell K E , Lin Y , et al . Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D22): 1-16.
20 Niu G Y , Yang Z L , Dickinson R E , et al . Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data [J]. Journal of Geophysical Research Atmospheres, 2007, 112: D07103.
21 Dickinson R E , Shaikh M , Bryant R , et al . Interactive canopies for a climate model [J]. Journal of Climate, 1998, 11(11): 2 823-2 836.
22 Shangguan W , Dai Y J , Liu B Y , et al . A soil particle-size distribution dataset for regional land and climate modelling in China [J]. Geoderma, 2012, 171: 85-91.
23 Chen F , Barlage M , Tewari M , et al . Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A modelinter-comparison study [J]. Journal of Geophysical Research Atmospheres, 2014, 119(24): 13 795-13 819.
24 Xia Y L , Sheffield J , Ek M B , et al . Evaluation of multi-model simulated soil moisture in NLDAS-2 [J]. Journal of Hydrology, 2014, 512: 107-125.
25 Hong S , Yu X , Park S K , et al . Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm [J]. Geoscientific Model Development, 2014, 7: 2 517-2 529.
26 Niu G Y , Yang Z L . Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale [J]. Journal of Hydrometeorology, 2006, 7(5): 937-952.
[1] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[2] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.
[3] 张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.
[4] 崔胜辉,李方一,黄 静,于裕贤. 全球变化背景下的敏感性研究综述[J]. 地球科学进展, 2009, 24(9): 1033-1041.
[5] 陈玲,阎广建,李静,余莹洁. 行播作物地面方向性测量的视场不确定性分析[J]. 地球科学进展, 2009, 24(7): 793-802.
[6] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[7] 张秋文,张培震. 地震中长期预测研究的进展和方向[J]. 地球科学进展, 1999, 14(2): 147-152.
阅读次数
全文


摘要