Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (6): 678-685    DOI: 10.11867/j.issn.1001-8166.2012.06.0678
研究论文     
土壤水分对土壤参数的敏感性及其参数优化方法研究
张添1,2,黄春林2*,沈焕锋1
1.武汉大学资源与环境科学学院,湖北武汉430079;2. 中国科学院寒区旱区环境与工程研究所,甘肃兰州730000
Sensitivity and Parameters Optimization Method of Soil Parameters to Soil Moisture in Common Land Model
Zhang Tian1,2,Huang Chunlin2,Shen Huanfeng1
1. School of Resource and Environmental Science,Wuhan University,Wuhan430079, China;
2. Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou730000, China
 全文: PDF(23068 KB)  
摘要:

利用2008年1月1日至2009年9月31日黑河流域阿柔冻融观测站的气象和土壤水分数据,采用基于方差的多参数敏感性分析方法研究通用陆面模型(Common Land Model,CoLM)模拟的土壤水分对土壤质地(砂土和黏土)的敏感性,进而采用SCE-UA参数优化算法分别优化土壤质地和土壤水力参数,分析不同优化策略对土壤水分模拟结果的影响。研究结果表明,浅层土壤水分对土壤质地较为敏感,敏感性系数达到了0.45以上,并且砂土含量对土壤水分的影响更为显著;利用SCE-UA算法优化土壤质地或土壤水力参数都可以有效地提高土壤水分的模拟精度,优化土壤水力参数易产生“异参同效”现象,而优化土壤质地能够使土壤水力参数的取值范围更加合理。

关键词: 土壤质地土壤水力参数土壤水分敏感性分析SCE-UA算法    
Abstract:

The sensitivity analysis of soil moisture to soil texture (sand and clay) was studied by using the common land model and meteorological forcing data from January 1, 2008 to September 31, 2009 at the Arou Observation Station in Heihe river basin. The SCEUA algorithm was utilized to optimize the soil texture and soil hydraulic parameters separately and the impact of the result of soil moisture with different strategies was analyzed. The result shows that surface moisture is quite sensitive to soil texture, the sensitivity coefficients are larger than 0.45, and the sand percentage is more significant to the soil moisture; SCE-UA algorithm is used to optimize the soil texture or soil hydraulic parameters which can effectively improve the accuracy of soil moisture simulation. However, optimizing soil hydraulic parameters will likely lead to the apperance of  the phenomenon of equifinality for different parameters, while optimizingsoil texture can constrain the range of soil hydraulic parameters and make them more reasonable.

Key words: SCE-UA algorithm    Soil texture    Soil hydraulic parameter    Soil moisture    Sensitivity analysis
收稿日期: 2012-01-04 出版日期: 2012-06-10
:  P349  
基金资助:

国家自然科学基金项目“基于数据同化方法的人类活动对植被动态变化贡献率估计及其不确定性分析”(编号:41101387);中国科学院“百人计划”项目“寒旱区地表水文关键要素的多源遥感数据同化研究”(编号:29Y127D01);国家重点基础研究发展计划项目“空间观测全球变化敏感因子的机理与方法”(编号:2009CB723905)资助.

通讯作者: 黄春林(1979-),男,宁夏青铜峡人,研究员,主要从事陆面数据同化研究     E-mail: huangcl@lzb.ac.cn
作者简介: 张添(1988-),男,湖北武汉人,硕士研究生,主要从事陆面数据同化、定量遥感研究. E-mail:whtzhang@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.

Zhang Tian,Huang Chunlin,Shen Huanfeng. Sensitivity and Parameters Optimization Method of Soil Parameters to Soil Moisture in Common Land Model. Advances in Earth Science, 2012, 27(6): 678-685.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.06.0678        http://www.adearth.ac.cn/CN/Y2012/V27/I6/678

[1]Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J].Progress in Natural Science, 2007, 17(8): 881-892.[李新,黄春林,车涛,等. 中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展, 2007, 17(8): 881-892.]
[2]Clapp R B, Hornberger G B. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604.
[3]Huang Guanhua, Zhan Weihua. Modeling soil water retention curve with fractal theory[J]. Advances in Water Science, 2002, 13(1): 55-60.[黄冠华,詹卫华. 土壤水分特性曲线的分形模拟[J]. 水科学进展, 2002, 13(1): 55-60.]
[4]Cosby B, Hornberger G B, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690.
[5]Fares A, Alva A, Nkedi-kizza P, et al. Estimation of soil hydraulic properties of a sandy soil using capacitance probes and guelph permeameter1[J]. Soil Science, 2000, 165(10): 768-777.
[6]Farouki O T. The thermal properties of soils in cold regions[J]. Cold Regions Science and Technology, 1981, 5(1): 67-75.
[7]Dickinson R E. Biosphere/Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model[R]. National Center for Atmospheric Research, 1986.
[8]Batjes N H. A world dataset of derived soil properties by FAO-UNESCO soil unit for global modeling[J]. Soil Use and Management,1997, 13(1): 9-16. 
[9]US Department of Agriculture. State Soil Geographic (STATSGO) Database of Arizona[M]. State College, PA: Penn State University Earth Systems Science Center, Natural Resources Conservation Service, 1994.
[10]Ran Youhua, Li Xin, Lu Ling. Accuracy evaluation of the four remote sensing based land cover products over China[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 490-500.[冉有华,李新,卢玲. 四种常用的全球1km覆盖数据中国区域的精度评价[J].冰川冻土, 2009, 31(3): 490-500.]
[11]Chandra G, Zhiliang Z, Bradley R. A comparative analysis of the global land cover 2000 and MODIS land cover data sets[J]. Remote Sensing of Environment, 2005,94(1): 123-132.
[12]Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large models[J]. Environmental Modelling & Software, 2007, 22(10): 1 509-1 518.
[13]Fu X, Chu X F, Tan G M. Sensitivity analysis for an infiltration-runoff model with parameter uncertainty[J]. Journal of Hydrologic Engineering, 2010, 15(9): 243-251.[14]Pappenberger F, Beven K J, Ratto M, et al. Multi-method global sensitivity analysis of flood inundation models[J]. Advances in Water Resources, 2008, 31 (1):1-14.
[15]Steinbrunn M, Moerkotte G, Kemper A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6(3):8-17.
[16]Termansen M, Colin J M, Christopher D P. The use of genetic algorithms and Bayesian classification to model species distributions[J]. Ecological Modelling, 2006, 192 (3/4):410-424.
[17]Gill M K, Kaheil Y H, Khalil A, et al. Multiobjective particle swarm optimization for parameter estimation in hydrology[J]. Water Resources Research,2006, 42 (7) : 1-14.
[18]Dai Y J, Zeng X, Dickinson R E, et al. The common land model[J]. Bulletin of the American Meteorological Society,2003, 84(8): 1 013-1 024.
[19]Dai Y J, Dickinson R E, Wang Y P. A two-big-leaf model for canopy temperature, photosynthesis and stomatal conductance[J]. Journal of Climate, 2004, 17(12): 2 281-2 299.
[20]Bonan G B. Land Surface Model (LSM version 1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and Users Guide[R]. National Center for Atmospheric Research, 1996.
[21]Dai Y J, Zeng Q C. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments[J]. Advances in Atmospheric Sciences, 1997, 14(4): 433-460.
[22]Dai Y J, Zeng X, Dickinson R E. Common Land Model (CLM): Technical Documentation and User′s Guide [R]. Atlanta: Georgia Institute of Technology, 2001.
[23]Helton J C, Johnson J D, Sallaberry C, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10/11): 1 175-1 209.
[24]Annan J. Modeling under uncertainty: Monte Carlo methods for temporally varying parameters[J]. Ecological Modeling, 2001, 136(2/3): 297-302.
[25]Decker K M. The Monte Carlo method in science and engineering: Theory and application[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1/3): 463-483.
[26]Saltelli A, Annoni P, Azzini I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index [J]. Computer Physics Communications, 2010, 181(2): 259-270.
[27]Saltelli A, Ratto M, Andres T, et al. Global Sensitivity Analysis: The Primer[M].Wiley Online Library,2008:25.
[28]Duan Q Y, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992, 28(4): 1 015-1 031.
[29]Duan Q Y, GuptaV K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications 1993, 76(3): 501-521.
[30]Duan Q Y, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158(3/4): 265-284.
[31]Tang Yunyi, Luan Chengmei. Application of SCE-UA method in calibrating parameters of Xin′anjiang Model and TOPMODEL[J]. Journal of China Hydrology, 2007, 27(6): 33-35.[唐运忆,栾承梅. SCE—UA 算法在新安江模型及TOPMODEL参数优化应用中的研究[J]. 水文, 2007, 27(6): 33-35.]
[32]Van L M, Veith T L, Bosch D D, et al. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds[J]. Journal of Hydrologic Engineering, 2007, 12(2): 173-190.
[33]Ajami K N, Gupta H, Wagener T, et al. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system[J]. Journal of Hydrology, 2004, 298(1/4): 112-135.
[34]Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectivesand experiment design[J]. Advances in Earth Science, 2008, 23(9): 897-914.[李新,马明国,王建,等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展, 2008, 23(9): 897-914.]
[35]Wang Jian, Che Tao, Zhang Lixin, et al. The cold regions hydtrological remote sensing and ground-based synchronous observation experiment in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 189-197.[王建,车涛,张立新,等. 黑河流域上游寒区水文遥感—地面同步观测试验[J]. 冰川冻土, 2009, 31(2): 189-197.]
[36]Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research[J].Journal of Geophysical Research, 2009, 114:D22103, doi: 10.1029/2008JD011590.
[37]Zhao T, Zhang L, Jiang L, et al. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J]. Hydrological Processes, 2011,25(11):1 704-1 716.

[1] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[2] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[3] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[4] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*[J]. 地球科学进展, 2014, 29(2): 295-305.
[5] 朱忠礼,林柳莺,徐同仁. 海河流域不同下垫面土壤水分动态模拟研究[J]. 地球科学进展, 2012, 27(7): 778-787.
[6] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[7] 崔胜辉,李方一,黄 静,于裕贤. 全球变化背景下的敏感性研究综述[J]. 地球科学进展, 2009, 24(9): 1033-1041.
[8] 赵天杰,张立新,蒋玲梅,陈权,张志玉,张勇攀. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775.
[9] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[10] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[11] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[12] 李新荣,何明珠,贾荣亮. 黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J]. 地球科学进展, 2008, 23(7): 685-691.
[13] 宋孝玉,李亚娟,蒋俊,马玉霞. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展, 2008, 23(6): 613-618.
[14] 李宁,顾卫,杜子璇,史培军,任学慧,KevinLevy. 内蒙古中西部地区不同土壤类型下土壤水分的研究[J]. 地球科学进展, 2006, 21(2): 151-156.
[15] 孙秉强;张强;董安祥;陈少勇. 甘肃黄土高原土壤水分气候特征[J]. 地球科学进展, 2005, 20(9): 1041-1046.