地球科学进展 ›› 2012, Vol. 27 ›› Issue (7): 778 -787. doi: 10.11867/j.issn.1001-8166.2012.07.0778

研究论文 上一篇    下一篇

海河流域不同下垫面土壤水分动态模拟研究
朱忠礼,林柳莺,徐同仁   
  1. 北京师范大学遥感科学国家重点实验室,地理学与遥感科学学院,北京100875
  • 收稿日期:2012-02-02 修回日期:2012-05-22 出版日期:2012-07-10
  • 通讯作者: 朱忠礼(1972-),男,河南商丘人,讲师,主要从事遥感水文方面的研究. E-mail:zhuzl@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“基于探地雷达面反射法的土壤水分观测实验研究”(编号:41071225)和“地表水热通量的时空尺度扩展研究”(编号:40971194);中央高校基本科研业务费专项;中德合作项目“基于遥感和数据同化方法的海河流域水文通量预测研究——SP2:不同尺度蒸散量和土壤水分的观测研究”(编号:30911130504)资助.

Soil Moisture Dynamic Simulation of Different Underlying Surface in the Hai River Basin

Zhu Zhongli, Lin Liuying, Xu Tongren   

  1. ](State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing100875,China
  • Received:2012-02-02 Revised:2012-05-22 Online:2012-07-10 Published:2012-07-10

针对海河流域不同的下垫面类型,选取密云(果园林地)、大兴(城郊农田)、馆陶(平原农田)3个观测站, 建立垂直方向上以含水率θ为因变量、含根系吸水项的非饱和土壤水分运动数值计算模型。该模型以一维Richards方程为基础(以下简称RE模型),采用实测的降水和蒸散数据作为模型的上边界条件,运用全隐式有限差分法,分别对不同生长期内的土壤水分进行数值模拟,得到时间序列的土壤水分廓线,并分别采用成熟软件HYDRUS1D的模拟结果和各观测站实测土壤水分对RE模型进行交叉验证和直接验证。结果表明RE模型能够很好地模拟海河流域不同下垫面土壤水分动态变化过程,3个站模拟结果与实测土壤水分数据的均方根误差(RMSE)分别为0.03127,0.0359和0.0409 cm3/cm3。与HYDRUS-1D软件模拟结果(其与观测值的RMSE分别为0.03759,0.0647和0.0467 cm3/cm3)相比,RE模型模拟的土壤水分具有更高的精度,也显示出RE模型的可靠性。探讨3个站土壤水分的时空变异规律及其影响因子并以大兴站为例,通过优化RE模型参数,探讨犁底层对土壤水分模拟结果的影响,进一步改善RE 模型的模拟精度。

A vertical soil moisture(θ) based unsaturated soil hydrodynamic numerical model was developed and used to simulate soil moisture movement at Miyun (orchard woodland), Daxing (Suburban farmland), Guantao (plain farmland) sites, which represent different underlying surface types in the Hai River Basin. The model based on one dimensional Richards’ equation (hereinafter referred to as the RE model) and the top boundary was input ground-measured rainfall and evapotranspiration data. Soil moisture during different growth stages was numerically simulated based on the fully implicit Finite Differential Method to obtain time series of soil moisture profile. Soil moisture simulated by mature HYDRUS-1D software and observed at the sites was used for crossvalidation and direct verification on the RE model simulation results, respectively. The result showed that the RE model was able to simulate the soil water dynamic changes of different underlying surfaces in Hai River Basin, with root mean square error (RMSE) compared to the observed soil moisture at three sites being  0.0313, 0.0359 and 0.0409 cm3/cm3, respectively. Compared to the simulation results of HYDRUS-1D software (whose RMSE were 0.0376, 0.0647 and 0.0467 cm3/cm3, respectively), the soil water simulated by RE model had higher precision which also showed the RE model reliability. The spatial and temporal variation of soil moisture and its impact factors were discussed. For the case of Daxing site,we analyzed the impact of plow on soil moisture modeling by optimizing the RE model parameters, under which consideration improved the simulation accuracy of the RE model was improved.

中图分类号: 

[1]Stekauerova V, Nagy V, Kotorova D. Soil water regime of agricultural field and forest ecosystems[J]. Biologia, 2006, 61(19):300-304.

[2]Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5):318-333.

[3]Downer C W, Ogden F L. Appropriate vertical discretization of Richards’ equation for two-dimensional watershed-scale modeling[J]. Hydrological Processes, 2004, 18(1): 1-22.

[4]Van Dam J C, Feddes R A. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation[J]. Journal of Hydrology, 2000, 233(1/4): 72-85.

[5]Pan L, Warrick A W, Wierenga P J. Finite elements methods for simulation water flow in variably saturated porous media: Numerical oscillation and mass distributed schemes [J]. Water Resources Research, 1996, 32(6): 1 883-1 889.

[6]Simunek J, Sejna M, Saito H, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.0x, Hydrus Series 3[Z]. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 2008.

[7]Hou Xiandong, Wang Zhirong, Zhang Jianfeng. Review on the numerical simulation of movement of unsaturated soil water[J]. Journal of Water Resources & Water Engineering, 2006, (4): 41-46.[侯宪东, 汪志荣, 张建丰. 非饱和土壤水分运动数值模拟研究综述[J]. 水资源与水工程学报, 2006, (4):41-46.]

[8]Brooks R H, Corey A T. Hydraulic properties of porous media[J]. Colorado States University,1964,3(3):27.

[9]Van Genuchten M Th. A close-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

[10]Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1 023-1 030.

[11]Liu Jianli, Xu Shaohui, Liu Hui. A review of development in estimating soil water retention characteristics from soil data[J]. Journal of Hydraulic Engineering, 2004, (2): 68-78.[刘建立, 徐绍辉, 刘慧. 估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,(2):68-78.]

[12]Rawls W J, Gish T J, Brakensiek D L. Estimating soil water retention from soil physical properties and characteristics[J]. Advances of Soil Science, 1991, 16: 213-234.

[13]Pachepsky Y A, Rawls W J, Lin H S. Hydropedology and pedotransfer functions[J]. Geoderma, 2006, 131(3/4): 308-316.

[14]Song Xiaoyu, Li Yajuan, Jiang Jun, et al. Progress and perspective of spatial variability study on unsaturated soil water movement parameters[J]. Advances in Earth Science, 2008,23(6): 613-618.[宋孝玉,李亚娟,蒋俊,等. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展,2008,23(6): 613-618.]

[15]Vereecken H, Maes J, Feyen J, et al. Estimating the soil water moisture retention characteristic from texture, bulk density, and carbon contenl[J]. Soil Science, 1989,148: 389-403.

[16]Wostan J H M, Lilly A, Ncmes A, et al. Development and use of adatabase of hydraulic properties of European soils[J]. Geoderma,1999,90(3/4): 169-185.

[17]Schaap M G, Leij F J, Van Genuchten M Th. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology, 2001, 251(3/4): 163-176.

[18]Van Genuchten M Th, Leij F J, Yates S R. The RETC Code for Quantifying the Hydraulic Functions for Unsaturated Soils[M]. California: U.S. Salinity Laboratory, 1999.

[19]Vereecken H, Weynants M, Javaux M, et al. Using pedotransfer functions to estimate the Van Genuchten-Mualem soil hydraulic properties: A review[J]. Vadose Zone Journal, 2010, 9(4): 795-820.

[20]Xia Jun, Zhai Jinliang, Zhan Chesheng. Several reflection on the development and research of water resources in China[J]. Advances in Earth Science, 2011, 26(9): 65-75.[夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考[J]. 地球科学进展,2011, 26(9): 65-75.]

[21]Bai Jie, Liu Shaomin, Ding Xiaoping, et al. A study of the processing method of large aperture scintillometer observation data[J]. Advances in Earth Science, 2010, 25(11): 1 187-1 198.[白洁,刘绍民,丁晓萍,等. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展,2010, 25(11): 1 187-1 198.]

[22]Wang Jian, Cai Huanjie, Chen Feng, et al. Experimental study on evapotranspiration and soil evaporation in summer maize field[J]. Journal of Hydraulic Engineering,2004,12(11): 1-7.[王健,蔡焕杰,陈凤,等. 夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J]. 水利学报,2004,12(11): 1-7.]

[23]Hoffman G J, Van Genuchten M Th. Soil properties and efficient water use: Water management for salinity control[C]Taylor H M, Jordan W R, Sinclair T R, eds. Limitations and Efficient Water Use in Crop Production.American Society of Agronomy, Madison, WI,1983:73-85.

[24]Stumpp C, Engelhardt S, Hofmann M, et al. Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps[J]. European Journal of Forest Research, 2009, 128(6): 609-620.

[25]Shang Songhao, Mao Xiaomin, Lei Zhidong, et al. Soil Moisture Dynamics Simulation Model and Its Application[M]. Beijing: Science Press, 2009.[尚松浩,毛晓敏,雷志栋,等. 土壤水分动态模拟模型及其应用[M]. 北京:科学出版社, 2009.]

[26]Kang Shaozhong, Liu Xiaoming, Xiong Yunzhang. Theory of Water Transport in Soil-Plant-Atmosphere Continuum and Its Applicatition[M]. Beijing: Water Power Press, 1994. [康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社, 1994.]

[27]Gribb M M, Forkutsaa I, Hansen A, et al. The effect of various soil hydraulic property estimates on soil moisture simulations[J]. Vadose Zone Journal, 2009, 8(2): 321-331.

[28]Schaap M G, Van Genuchten M Th. A modified Mualem-Van Genuchten formulation for improved description of the hydraulic conductivity near saturation[J]. Vadose Zone Journal, 2005, 5(1): 27-34.

[29]Downer C W, Ogden F L. Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment[J]. Water Resources Research, 2003, 39(3): 1-13.

[1] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[2] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[3] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[4] 张志禹,樊婷,王喜乐. 孔隙结构参数对地震各类波传播的影响研究[J]. 地球科学进展, 2015, 30(12): 1306-.
[5] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[6] 张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.
[7] 夏军,邱冰,潘兴瑶,翁建武,傅国斌,欧阳如林. 气候变化影响下水资源脆弱性评估方法及其应用[J]. 地球科学进展, 2012, 27(4): 443-451.
[8] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[9] 武震,张世强,刘时银,杜文涛. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.
[10] 苟浩锋,刘彦华,张述文,李得勤. 评估集合卡曼滤波反演土壤湿度廓线的性能[J]. 地球科学进展, 2010, 25(4): 400-407.
[11] 白洁,刘绍民,丁晓萍. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展, 2010, 25(11): 1187-1198.
[12] 赵天杰,张立新,蒋玲梅,陈权,张志玉,张勇攀. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775.
[13] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[14] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[15] 李新荣,何明珠,贾荣亮. 黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J]. 地球科学进展, 2008, 23(7): 685-691.
阅读次数
全文


摘要