地球科学进展 ›› 2011, Vol. 26 ›› Issue (6): 631 -641. doi: 10.11867/j.issn.1001-8166.2011.06.0631

研究论文 上一篇    下一篇

祁连山老虎沟12号冰川冰内结构特征分析
武震 1,张世强 1,刘时银 1,杜文涛 1,2   
  1. 1.中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室,甘肃兰州730000;
    2.中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室,祁连山冰川与生态环境综合观测研究站,甘肃兰州730000
  • 收稿日期:2010-11-23 修回日期:2011-02-20 出版日期:2011-06-10
  • 通讯作者: 武震 E-mail:wuzhen@lzb.ac.cn
  • 基金资助:

    科技部基础性工作专项项目“中国冰川资源及其变化调查”(编号:2006FY110200);中国科学院知识创新工程重要方向项目“冰碛湖耦合关系及对冰碛湖溃决机理影响研究”(编号:KZCX2-YW-Q03-04);中国科学院知识创新工程项目“中国冰川资源及其变化调查”(编号:KZCX2-YW-GJ04)资助.

Structural Characteristics of the No.12 Glacier in Laohugou Valley,Qilian Mountain Based on the Ground Penetrating Radar Combined  with FDTD Simulation

Wu Zhen 1, Zhang Shiqiang 1, Liu Shiyin 1, Du Wentao 1,2   

  1. 1.State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research, Institute,Chinese Academy of Sciences,Lanzhou730000, China; 
    2.Qilian Mountain Station of Glaciology and Ecologic Environmental of State Key  Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research,Institute, Chinese Academy of Sciences, Lanzhou730000, China
  • Received:2010-11-23 Revised:2011-02-20 Online:2011-06-10 Published:2011-06-10

利用探地雷达(Ground Penetration Radar, GPR)调查冰川冰内结构和冰层厚度是一种监测冰川变化常用手段。应用麦克斯维(Maxwell)方程的二维时域有限差分 (FDTD)方法,通过将模拟图像与老虎沟12号冰川的实测图像的对比,分析了雷达剖面中的几种反射特征,如冰裂隙、融洞、暖冰等。对比结果表明,GPR的反射图像会受到诸多因素的影响,除了介电常数,还包括介质的厚度,形态,粗糙度等因素的影响。探测结果表明,具有极大陆型特征的老虎沟12号冰川的局部的冰内温度呈现出较高的态势。同时,FDTD模拟也为我们未来利用GPR来监测冰川随气候的变化提供了很好的分析手段。

The use of ground penetration radar(GPR)for surveying glacial structure and ice thickness is a common method of monitoring glacial variation, but how to extract accurately the information and ice thickness is often more concerned about data interpretation. In this paper, we have run a Finite-Difference Time-Domain (FDTD) model that solves Maxwell′s equations in two dimensions, by comparison simulated image and the results of measured radar, and  analyzed  several reflection characteristics within several profiles, such as crevasses, melting cave, and temperate ice and so on. Comparison results show that GPR reflection image is affected by many factors, such as medium thickness, morphology, roughness and other factors as well in addition to dielectric constant.The survey result also shows that the icebody temperature  at Lao hugou valley No.12 glacier as polar continental glacier presents a higher trend.  Meteorological and historical data indicate that  the retreat and ablation of glaciers have been aggravated   in recent years. Meanwhile, GPR combined  with FDTD simulation provides good analytical tools for monitoring glacial variation along with climate change in our future.

中图分类号: 

[1]Molnia B. Late nineteenth to early twentyfirst century behavior of Alaskan glaciers as indicates of changing regional climate[J].Global and Planetary Change,2007,56(1/2): 23-56.
[2]Barry R G. The status of research on glaciers and global glacier recession: A review[J].Progress in Physical Geography,2006,30(3): 285-306.
[3]Irvine-Fynn T D L, Moorman B J, Williams J L M,et al.Seasonal changes in groundpenetrating radar signature observed at a polythermal glacier, Bylot Island, Canada[J].Earth Surface Processes and Landforms,2006,31: 892-909.
[4]Haeberli W. Mountain glaciers in global climate-related observing systems[C]Huber U M, Reasoner M A, Bugmann H, eds. Global Change and MountainRegions: A State of Knowledge Overview. Kluwer Academic, Dordrecht,2005:169-175.
[5]Colbeck S C. The layered character of snow covers[J].Reviews of Geophysics, 1991, 29(1): 81-96.
[6]Murray T, Stuart G W, Fry M, et al. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis[J].Journal of Glaciology,2000,46(154): 389-398.
[7]Bentley C R. Advances in geophysical exploration of ice sheets and glaciers[J].Journal of Glaciology, 1975,15(73): 113-135.
[8]Clarke T S, Bentley C R. High-resolution radar on icestream B2, Antarctica: Measurements of electromagnetic wave speed in firn and strain history from buried crevasses[J].Annal of Glaciology,1994,20(1): 153-159.
[9]Sun Bo,Wen Jiahong,He Maobing,et al. Arctic sea ice thickness penetrating radar detection and analysis of surface shape features[J].Science China Press,2002,32(11):951-958.
[10]Benjumea B, Macheret Yu Ya, Navarro F,et al. Estimation of water content in a temperate glacier from radar and seismic sounding data[J].Annal of Glaciology,2003,37(1):317-324.
[11]James Irving, Rosemary Knight. Numerical modeling of ground-penetrating in 2-D using MATLAB[J]. Computers & Geosciences,2006, 32(9): 1 247-1 258.
[12]Yee K S. Numerical solution of initial boundary value problemsinvolving Maxwell equations in isotropic media[J].IEEE TransAntennas Propagat,1966,14(3):302-307.
[13]Wang T, Tripp A C. FDTD simulation of EM wave propagation in 3-D media[J].Geophysics, 1996, 61(1): 110-120.
[14]Chen Y H, Chew W C, Oristaglio M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J].Geophysics,1997, 62(6):1 730-1 736.
[15]Bergmann T, Robertsson J O A, Holliger K. Finite difference modeling of electromagnetic wave propagation in dispersive and attenuating media
[J].Geophysics,1998,63(3):856-867.
[16]Holliger K, Bergman T. Numerical modeling of borehole georadar data[J].Geophysics,2002,67(4):1 249-1 257.
[17]Teixeira F L,Chew W C, Straka M,et al. Finite-difference time-domain simulation of groundpenetratingradar on dispersive, inhomogeneous, and conductive soils[J].IEEE Transaction Geoscience Remote Sensing,1998,36(6):1 928-1 936.
[18]Taflove S C, Hagness. The Finite-Difference Time-Domain Method[M].Amazon: Computational Electro Dynamics:Third Edition, 2005:78.
[19]Kohler J, Moore J C, Isaksson E. Comparison of modeled and observed responses of a glacier snowpack to ground-penetrating radar[J].Annals of Glaciology,2003,37(1):293-297.[20]Sun Zuozhe, Xie Zichu. The recent changes and trend of glacier No.12 at the jokul of Qi Lian mountain
[J]. Chinese Science Bulletin,1980,2(6):366-369.[孙作哲,谢自楚.祁连山大雪山老虎沟12号冰川的近期变化及趋势[J].科学通报, 1981, 26(6): 366-369.]
[21]Du Wentao, Qin Xiang, Liu Yushuo,et al. Variation of the Lao hugou Glacier No.12 in the Qilian Mountains[J].Journal of Glaciology and Geocryology,2008,30(3):373-379.[杜文涛,秦翔,刘宇硕,等.1985—2005年祁连山老虎沟12号冰川变化特征研究[J].冰川冻土, 2008, 30(3):373-379.]
[22]Kovacs A,Anthony J, Gow A, et al. The insitu dielectric constant of polar firn revisited[J].Cold Regions Science and Technology.,1995,23(3):245-256.
[23]Wu Zhen, Zhang Shiqiang, Liu Shiyin. Structural characteristics of the No.12 Glacier in Laohugou valley Qilian mountain based on the ground penetrating radar sounding[J].Advances in Earth Science,2009, 24(10):1 149-1 158.[武震,张世强,刘时银.祁连山老虎沟12号冰川冰下形态特征分析[J].地球科学进展, 2009,24(10):1 149-1 158.]
[24]Kotlyakov V M, Macheret Y Y. Radio echosounding of subpolar glaciers in Svalbard: Some problems and results of Soviet studies[J].Journal of Glaciology,1987, 9:151-159.
[25]Plewes L A, Hubbard B. A review of the use of radio-echo sounding in glaciology[J].Progress in Physical Geography, 2001,25(2): 203-236. 
[26]Andrea Taurisano, Stein Tronstad, Ola Brandt, et al. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in DronningMaud Land Antarctica[J].Cold Regions Science and Technology,2006, 45(3):166-177.
[27]Ola Brandt, Andrea Taurisano, Antonios Giannopoulos,et al. What can GPR tell us about cryoconite holes? 3D FDTD modeling, excavation and field GPR data[J].Cold Regions Science and Technology,2008, 55(1):111-119.
[28]Du Wentao,Qin Xiang,Sun Weijun,et al. Comparison study of the temperature reconstruction in the regions of Mountain glacier-take Lao hugou No.12 Glacier area[J].Journal of Arid Land Resource and Environment (in press).[杜文涛,秦翔,孙维君,等.山地冰川区气温重建比较研究——以祁连山老虎沟冰川区为例[J].干旱区资源与环境(待刊).]
[29]Liu Chaohai, Kang Ersi, Liu Shiyin. Glaciers variation and its runoff effects study at arid lands northwestern China[J].Science in China (Series D),1999, 29 (Suppl.1): 55-62.[刘潮海,康尔泗,刘时银.西北干旱区冰川变化及其径流效应研究[J].中国科学:D缉,1999,29(增刊1):55-62.]
[30]Liu Chaohai, Xie Zichu. Recent changes and the trend forecast in glacier in Qilian Mountains and the trend forecast[J].Chinese Science bulletin,1988,33(8):620-623.[刘潮海,谢自楚.祁连山冰川的近期变化及其趋势预测[J].科学通报, 1988,33(8): 620-623.]
[31]Liu Shiyin, Ding Yongjian, Li Jing. Glaciers in response to recent climate warming in western China[J].Quaternary Sciences,2006,26(5):762-771.
[刘时银,丁永建,李晶.中国西部冰川对近期气候变暖的响应[J].第四纪研究, 2006,26(5):762-771.]

[1] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[2] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[5] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[6] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[7] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[8] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[9] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[10] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[11] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[12] 周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
[13] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[14] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[15] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
阅读次数
全文


摘要