地球科学进展 ›› 2021, Vol. 36 ›› Issue (1): 58 -68. doi: 10.11867/j.issn.1001-8166.2021.004

研究论文 上一篇    下一篇

CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估
夏松( ), 刘鹏( ), 江志红, 程军   
  1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化联合国际研究实验室/气象灾害 预测与评估协同创新中心,江苏 南京 210044
  • 收稿日期:2020-10-23 修回日期:2020-12-27 出版日期:2021-03-19
  • 通讯作者: 刘鹏 E-mail:xs_11272020@163.com;liupeng1998@nuist.edu.cn
  • 基金资助:
    国家重点研发计划项目“工业革命以来年代际气候变化的全球格局及归因”(2016YFA0600402);“全球增暖1.5 ℃下东亚气候系统的响应及其情景预估”(2017YFA0603804)

Simulation Evaluation of AMO and PDO with CMIP5 and CMIP6 Models in Historical Experiment

Song XIA( ), Peng LIU( ), Zhihong JIANG, Jun CHENG   

  1. Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science and Technology,Nanjing 210044,China
  • Received:2020-10-23 Revised:2020-12-27 Online:2021-03-19 Published:2021-03-19
  • Contact: Peng LIU E-mail:xs_11272020@163.com;liupeng1998@nuist.edu.cn
  • About author:XIA Song (1997-), male, Suqian City, Jiangsu Province, Master student. Research areas include climate change. E-mail: xs_11272020@163.com
  • Supported by:
    the National Key R & D Program "The global pattern and attribution of interdecadal climate change since the industrial revolution"(2016YFA0600402);"The East Asian climate system response and scenario projection under global warming at 1.5 ℃"(2017YFA0603804)

利用Hadley中心的观测海温资料,以及耦合模式比较计划的第五阶段和耦合模式比较计划的第六阶段历史试验的模式资料,分析和评估了2个最为重要的年代际尺度模态,北大西洋年代际振荡、太平洋年代际振荡在耦合模式比较计划的第五阶段和耦合模式比较计划的第六阶段中的模拟能力。通过对比多模式集合发现,在空间模态方面,耦合模式比较计划的第五阶段和耦合模式比较计划的第六阶段都能模拟出北大西洋年代际振荡在北大西洋地区的信号,但耦合模式比较计划的第六阶段的模拟更好,对于太平洋年代际振荡模态而言,都能模拟出在北太平洋地区的信号,而太平洋年代际振荡在热带太平洋地区的信号,耦合模式比较计划的第六阶段模拟的振幅明显更接近观测。在周期的模拟方面,耦合模式比较计划的第五阶段和耦合模式比较计划的第六阶段结果相似,都能模拟出北大西洋年代际振荡存在60~70年的周期,以及太平洋年代际振荡存在20年和60~70年的双周期。整体而言,耦合模式比较计划的第六阶段相比于耦合模式比较计划的第五阶段在空间特征模拟方面有一定进步,但是对于周期的模拟能力,没有明显进步。

Using the observed sea surface temperature data of the Hadley Center, as well as the model data under historical experiments in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the Coupled Model Intercomparison Project Phase 6 (CMIP6), the simulation ability of the two most important interdecadal scale modes, the Atlantic Multi-decadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO), in CMIP5 and CMIP6 was analyzed and evaluated. By comparing the multi-model ensemble, it is found that in terms of spatial patterns, both CMIP6 and CMIP5 can simulate the signals of AMO in the North Atlantic region, but the simulation of CMIP6 is better. For PDO modes, both can simulate the signal in the North Pacific region, while for the PDO signal in the tropical Pacific region, the amplitude of the CMIP6 simulation is significantly closer to the observation. In terms of periodic simulation, the results of CMIP5 and CMIP6 are similar, and both can simulate the 60~70-year period of the AMO and the double periods, namely 20 and 60~70 years, of the PDO. On the whole, CMIP6 has a certain improvement in the simulation of spatial characteristics compared with CMIP5. But there is no significant improvement in the ability of periodic simulation.

中图分类号: 

表1 所选 CMIP模式
Table 1 The selected CMIP models
表1 所选 CMIP模式
Table 1 The selected CMIP models
表2 观测和 CMIP5历史试验下的模拟综合分析
Table 2 The comprehensive analysis of the observation and simulations under the CMIP5 historical experiment
表2 观测和 CMIP5历史试验下的模拟综合分析
Table 2 The comprehensive analysis of the observation and simulations under the CMIP5 historical experiment
表3 观测和 CMIP6历史试验下的模拟综合分析
Table 3 The comprehensive analysis of the observation and simulations under the CMIP6 historical experiment
表3 观测和 CMIP6历史试验下的模拟综合分析
Table 3 The comprehensive analysis of the observation and simulations under the CMIP6 historical experiment
图1 历史试验全球平均SST距平及增暖趋势随时间变化
(a) CMIP5;(b) CMIP6;黑色实线代表全球平均SST距平,黑色虚线代表增暖趋势
Fig.1 The historical experiment global mean SST anomaly and its warming trend with time
(a) CMIP5;(b) CMIP6;Solid black lines represent global mean SST anomaly and dashed black lines represent the warming trend
图1 历史试验全球平均SST距平及增暖趋势随时间变化
(a) CMIP5;(b) CMIP6;黑色实线代表全球平均SST距平,黑色虚线代表增暖趋势
Fig.1 The historical experiment global mean SST anomaly and its warming trend with time
(a) CMIP5;(b) CMIP6;Solid black lines represent global mean SST anomaly and dashed black lines represent the warming trend
图2 观测、CMIP5CMIP6的历史试验的AMOPDO的空间分布图
(a)和(b) 观测;(c)和(d) CMIP5历史试验;(e)和(f) CMIP6历史试验
Fig.2 The spatial distribution of AMO and PDO in observation,historical experiment of CMIP5 and CMIP6
(a) and (b) Observation; (c) and (d) CMIP5 historical; (e) and (f) CMIP6 historical
图2 观测、CMIP5CMIP6的历史试验的AMOPDO的空间分布图
(a)和(b) 观测;(c)和(d) CMIP5历史试验;(e)和(f) CMIP6历史试验
Fig.2 The spatial distribution of AMO and PDO in observation,historical experiment of CMIP5 and CMIP6
(a) and (b) Observation; (c) and (d) CMIP5 historical; (e) and (f) CMIP6 historical
图3 观测以及CMIP5CMIP6的功率谱
(a) AMO;(b) PDO;紫色线为观测资料,蓝色线为CMIP5多模式集合,红色线为CMIP6多模式集合,较高黑色虚线为95%检验线,较低黑色虚线为红噪音线,垂直虚线为模式标准差
Fig.3 The power spectrum of the observation,CMIP5 and CMIP6
(a) AMO;(b) PDO; The purple line is the observation data,the blue line is the MME of CMIP5,the red line is the MME of CMIP6,the higher black dotted line is the 95% test line,the lower black dotted line is the red noise line,and the vertical dotted line is the standard deviation between models
图3 观测以及CMIP5CMIP6的功率谱
(a) AMO;(b) PDO;紫色线为观测资料,蓝色线为CMIP5多模式集合,红色线为CMIP6多模式集合,较高黑色虚线为95%检验线,较低黑色虚线为红噪音线,垂直虚线为模式标准差
Fig.3 The power spectrum of the observation,CMIP5 and CMIP6
(a) AMO;(b) PDO; The purple line is the observation data,the blue line is the MME of CMIP5,the red line is the MME of CMIP6,the higher black dotted line is the 95% test line,the lower black dotted line is the red noise line,and the vertical dotted line is the standard deviation between models
图4 CMIP5CMIP6空间模态和周期的VFE泰勒图
横纵坐标为矢量长度,扇形坐标为相似系数
Fig.4 The VFE Taylor diagrams of patterns and periods of the CMIP5 and CMIP6
Horizontal and vertical coordinates are vector lengths,and sector coordinates are similarity coefficients
图4 CMIP5CMIP6空间模态和周期的VFE泰勒图
横纵坐标为矢量长度,扇形坐标为相似系数
Fig.4 The VFE Taylor diagrams of patterns and periods of the CMIP5 and CMIP6
Horizontal and vertical coordinates are vector lengths,and sector coordinates are similarity coefficients
表4 CMIP5CMIP6MME结果对比
Table 4 The comparison of MME results of the CMIP5 and CMIP6
表4 CMIP5CMIP6MME结果对比
Table 4 The comparison of MME results of the CMIP5 and CMIP6
图5 观测以及CMIP5CMIP6区域平均柱状图
(a)所有模式;(b)共有模式;NA区域为左边3列,NP区域为中间3列,TP区域为右边3列,紫色为观测,橙色为CMIP5,红色为CMIP6,垂直黑色线为模式间标准差
Fig. 5 The area average histogram of the observation,CMIP5 and CMIP6
(a) All models;(b) Common models;NA area is three columns on the left,NP area is three columns in the middle,TP area is three columns on the right,purple is observation,orange is CMIP5,red is CMIP6,vertical black line is standard deviation between models
图5 观测以及CMIP5CMIP6区域平均柱状图
(a)所有模式;(b)共有模式;NA区域为左边3列,NP区域为中间3列,TP区域为右边3列,紫色为观测,橙色为CMIP5,红色为CMIP6,垂直黑色线为模式间标准差
Fig. 5 The area average histogram of the observation,CMIP5 and CMIP6
(a) All models;(b) Common models;NA area is three columns on the left,NP area is three columns in the middle,TP area is three columns on the right,purple is observation,orange is CMIP5,red is CMIP6,vertical black line is standard deviation between models
1 LIU P,SUI C H. An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability [J]. Advances in Atmospheric Sciences,2014,31(2): 316-330.
LIU P,SUI C H. An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability [J]. Advances in Atmospheric Sciences,2014,31(2): 316-330.
2 BJERKNES J. Atlantic air-sea interaction[J]. Advances in Geophysics,1964,10: 1-82.
BJERKNES J. Atlantic air-sea interaction[J]. Advances in Geophysics,1964,10: 1-82.
3 FOLLAND C K,PARKER D E. Observed variations of sea surface temperature [C]. Berlin: Springer Netherlands,1990: 21-52.
FOLLAND C K,PARKER D E. Observed variations of sea surface temperature [C]. Berlin: Springer Netherlands,1990: 21-52.
4 LIU Peng,JIANG Zhihong,YU Huaying,et al. A comparative analysis of main modes of global-scale sea surface temperature on multiple time scale[J]. Advances in Earth Science,2014,29(7): 844-853.
LIU Peng,JIANG Zhihong,YU Huaying,et al. A comparative analysis of main modes of global-scale sea surface temperature on multiple time scale[J]. Advances in Earth Science,2014,29(7): 844-853.
刘鹏,江志红,于华英,等. 全球海表温度在不同时间尺度的主模态对比分析 [J]. 地球科学进展,2014,29(7): 844-853.
刘鹏,江志红,于华英,等. 全球海表温度在不同时间尺度的主模态对比分析 [J]. 地球科学进展,2014,29(7): 844-853.
5 KERR R A. A North Atlantic climate pacemaker for the centuries [J]. Science,2000,288(5 473): 1 984-1 986.
KERR R A. A North Atlantic climate pacemaker for the centuries [J]. Science,2000,288(5 473): 1 984-1 986.
6 MANTUA N J,HARE S R,ZHANG Y,et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society,1997,78(6): 1 069-1 079.
MANTUA N J,HARE S R,ZHANG Y,et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society,1997,78(6): 1 069-1 079.
7 MINOBE S. A 50-70 year climatic oscillation over the North Pacific and North America[J]. Geophysical Research Letters,1997,24(6): 683-686.
MINOBE S. A 50-70 year climatic oscillation over the North Pacific and North America[J]. Geophysical Research Letters,1997,24(6): 683-686.
8 CHEN X,TUNG K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science,2014,345(6 199): 897-903.
CHEN X,TUNG K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science,2014,345(6 199): 897-903.
9 WU S,LIU Z Y,CHENG J,et al. Response of North Pacific and North Atlantic decadal variability to weak global warming[J]. Advances in Climate Change Research,2018,9(2): 95-101.
WU S,LIU Z Y,CHENG J,et al. Response of North Pacific and North Atlantic decadal variability to weak global warming[J]. Advances in Climate Change Research,2018,9(2): 95-101.
10 XIE S P,KOSAKA Y. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature,2013,501(7 467): 403-407.
XIE S P,KOSAKA Y. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature,2013,501(7 467): 403-407.
11 ENGLAND M H,MCGREGOR S,SPENCE P,et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus [J]. Nature Climate Change,2014,4(3): 222-227.
ENGLAND M H,MCGREGOR S,SPENCE P,et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus [J]. Nature Climate Change,2014,4(3): 222-227.
12 MCGREGOR S,TIMMERMANN A,STUECKER M F,et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming [J]. Nature Climate Change,2014,4(10): 888-892.
MCGREGOR S,TIMMERMANN A,STUECKER M F,et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming [J]. Nature Climate Change,2014,4(10): 888-892.
13 DAI A,FYFE J C,XIE S P,et al. Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change,2015,5(6): 555-559.
DAI A,FYFE J C,XIE S P,et al. Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change,2015,5(6): 555-559.
14 KNIGHT J R,FOLLAND C K,SCAIFE A A. Climate impacts of the atlantic multidecadal oscillation [J]. Geophysical Research Letters,2006,33(17):L17706.
KNIGHT J R,FOLLAND C K,SCAIFE A A. Climate impacts of the atlantic multidecadal oscillation [J]. Geophysical Research Letters,2006,33(17):L17706.
15 HAO X,HE S,WANG H. Asymmetry in the response of central Eurasian winter temperature to AMO [J]. Climate Dynamics,2016,47(7/8): 2 139-2 154.
HAO X,HE S,WANG H. Asymmetry in the response of central Eurasian winter temperature to AMO [J]. Climate Dynamics,2016,47(7/8): 2 139-2 154.
16 GAO M N,YANG J,GONG D Y,et al. Footprints of Atlantic Multi-decadal Oscillation in the low-frequency variation of extreme high temperature in the Northern Hemisphere [J]. Journal of Climate,2019,32(3): 791-802.
GAO M N,YANG J,GONG D Y,et al. Footprints of Atlantic Multi-decadal Oscillation in the low-frequency variation of extreme high temperature in the Northern Hemisphere [J]. Journal of Climate,2019,32(3): 791-802.
17 ZHANG G W,ZENG G,LI C,et al. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period [J]. Climate Dynamics,2020,54(5/6): 3 003-3 020.
ZHANG G W,ZENG G,LI C,et al. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period [J]. Climate Dynamics,2020,54(5/6): 3 003-3 020.
18 GENG X,ZHANG W J,JIN F F,et al. Modulation of the relationship between ENSO and its combination Mode by the Atlantic Multidecadal Oscillation [J]. Journal of Climate,2020,33(11): 4 679-4 695.
GENG X,ZHANG W J,JIN F F,et al. Modulation of the relationship between ENSO and its combination Mode by the Atlantic Multidecadal Oscillation [J]. Journal of Climate,2020,33(11): 4 679-4 695.
19 LIN R P,ZHENG F,DONG X. ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 Models [J]. Advances in Atmospheric Sciences,2018,35(5): 495-506.
LIN R P,ZHENG F,DONG X. ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 Models [J]. Advances in Atmospheric Sciences,2018,35(5): 495-506.
20 XU Y F,LI T,SHEN S H,et al. Assessment of CMIP5 Models based on the interdecadal relationship between the PDO and winter temperature in China [J]. Atmosphere,2019,10(10): 597.
XU Y F,LI T,SHEN S H,et al. Assessment of CMIP5 Models based on the interdecadal relationship between the PDO and winter temperature in China [J]. Atmosphere,2019,10(10): 597.
21 WANG Dai,SUN Yinchuan,YOU Qinglong. Contribution of Pacific Decadal Oscillation to interdecadal variability of winter minimum temperature in China [J]. Climate Change Research,2020,16(1): 70-77.
WANG Dai,SUN Yinchuan,YOU Qinglong. Contribution of Pacific Decadal Oscillation to interdecadal variability of winter minimum temperature in China [J]. Climate Change Research,2020,16(1): 70-77.
王岱,孙银川,游庆龙. 太平洋年代际振荡对中国冬季最低气温年代际变化的贡献 [J]. 气候变化研究进展,2020,16(1):70-77.
王岱,孙银川,游庆龙. 太平洋年代际振荡对中国冬季最低气温年代际变化的贡献 [J]. 气候变化研究进展,2020,16(1):70-77.
22 ZHU Weijun,CAO Yuchen,LI Tianyu,et al. Possible influence of the Pacific Decadal Oscillation on the concurrent variations of the northern Atlantic and Pacific storm tracks during boreal winter [J]. Transactions of Atmospheric Sciences,2019,42(6): 892-901.
ZHU Weijun,CAO Yuchen,LI Tianyu,et al. Possible influence of the Pacific Decadal Oscillation on the concurrent variations of the northern Atlantic and Pacific storm tracks during boreal winter [J]. Transactions of Atmospheric Sciences,2019,42(6): 892-901.
朱伟军,曹煜晨,李天宇,等. 太平洋代际振荡对冬季北半球两大洋风暴轴协同变化的可能影响 [J]. 大气科学学报,2019,42(6):892-901.
朱伟军,曹煜晨,李天宇,等. 太平洋代际振荡对冬季北半球两大洋风暴轴协同变化的可能影响 [J]. 大气科学学报,2019,42(6):892-901.
23 MEEHL G A,HU A,CASTRUCCIO F,et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes [J]. Nature Geoscience,2020. DOI:10.1038/s41561-020-00669-x.
MEEHL G A,HU A,CASTRUCCIO F,et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes [J]. Nature Geoscience,2020. DOI:10.1038/s41561-020-00669-x.
doi: 10.1038/s41561-020-00669-x    
24 SI D,DING Y. Oceanic forcings of the interdecadal variability in East Asian summer rainfall [J]. Journal of Climate,2016,29(21): 7 633-7 649.
SI D,DING Y. Oceanic forcings of the interdecadal variability in East Asian summer rainfall [J]. Journal of Climate,2016,29(21): 7 633-7 649.
25 JOSHI M K,HA K J. Fidelity of CMIP5-simulated teleconnection between Atlantic multidecadal oscillation and Indian summer monsoon rainfall [J]. Climate Dynamics,2019,52(7/8): 4 157-4 176.
JOSHI M K,HA K J. Fidelity of CMIP5-simulated teleconnection between Atlantic multidecadal oscillation and Indian summer monsoon rainfall [J]. Climate Dynamics,2019,52(7/8): 4 157-4 176.
26 MURPHY L N,BELLOMO K,CANE M,et al. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation [J]. Geophysical Research Letters,2017,44(5): 2 472-2 480.
MURPHY L N,BELLOMO K,CANE M,et al. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation [J]. Geophysical Research Letters,2017,44(5): 2 472-2 480.
27 RUIZ-BARRADAS A,NIGAM S,KAVVADA A. The Atlantic Multidecadal Oscillation in twentieth century climate simulations: Uneven progress from CMIP3 to CMIP5[J]. Climate Dynamics,2013,41(11/12): 3 301-3 315.
RUIZ-BARRADAS A,NIGAM S,KAVVADA A. The Atlantic Multidecadal Oscillation in twentieth century climate simulations: Uneven progress from CMIP3 to CMIP5[J]. Climate Dynamics,2013,41(11/12): 3 301-3 315.
28 ZHANG L P,WANG C Z. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations [J]. Journal of Geophysical Research Oceans,2013,118(10): 5 772-5 791.
ZHANG L P,WANG C Z. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations [J]. Journal of Geophysical Research Oceans,2013,118(10): 5 772-5 791.
29 YIM B Y,KWON M H,MIN H S,et al. Pacific Decadal Oscillation and its relation to the extratropical atmospheric variation in CMIP5 [J]. Climate Dynamics,2015,44(5/6): 1 521-1 540.
YIM B Y,KWON M H,MIN H S,et al. Pacific Decadal Oscillation and its relation to the extratropical atmospheric variation in CMIP5 [J]. Climate Dynamics,2015,44(5/6): 1 521-1 540.
30 RAYNER N A,PARKER D E,HORTON E B,et al. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century [J]. Journal of Geophysical Research: Atmospheres,2003,108: 4 407.
RAYNER N A,PARKER D E,HORTON E B,et al. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century [J]. Journal of Geophysical Research: Atmospheres,2003,108: 4 407.
31 HUANG N E,LONG S R,SHEN Z. The mechanism for frequency downshift in nonlinear wave evolution [J]. Advances in Applied Mechanics,1996,32(8): 59-117.
HUANG N E,LONG S R,SHEN Z. The mechanism for frequency downshift in nonlinear wave evolution [J]. Advances in Applied Mechanics,1996,32(8): 59-117.
32 HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,1998,454(1 971): 903-995.
HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,1998,454(1 971): 903-995.
33 HUANG N E,SHEN Z,LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31(1): 417-457.
HUANG N E,SHEN Z,LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31(1): 417-457.
34 XU Z F,HOU Z L,HAN Y,et al. A diagram for evaluating multiple aspects of model performance in simulating vector fields [J]. Geoscientific Model Development,2016,9(12): 4 365-4 380.
XU Z F,HOU Z L,HAN Y,et al. A diagram for evaluating multiple aspects of model performance in simulating vector fields [J]. Geoscientific Model Development,2016,9(12): 4 365-4 380.
35 ZHU X,DONG W J,WEI Z G,et al. Multi‐decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models [J]. International Journal of Climatology,2018,38(3): 1 533-1 542.
ZHU X,DONG W J,WEI Z G,et al. Multi‐decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models [J]. International Journal of Climatology,2018,38(3): 1 533-1 542.
36 CHENG J,LIU Z,ZHANG S,et al. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming [J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(12): 3 175-3 178.
CHENG J,LIU Z,ZHANG S,et al. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming [J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(12): 3 175-3 178.
37 GENG T,YANG Y,WU L X. On the Mechanisms of Pacific Decadal Oscillation Modulation in a warming climate [J]. Journal of Climate,2019,32(5): 1 443-1 459.
GENG T,YANG Y,WU L X. On the Mechanisms of Pacific Decadal Oscillation Modulation in a warming climate [J]. Journal of Climate,2019,32(5): 1 443-1 459.
38 WU Z,HUANG N E,WALLACE J M,et al. On the time-varying trend in global-mean surface temperature [J]. Climate Dynamics,2011,37(3/4): 759-773.
WU Z,HUANG N E,WALLACE J M,et al. On the time-varying trend in global-mean surface temperature [J]. Climate Dynamics,2011,37(3/4): 759-773.
39 DESER C,PHILLIPS A S,ALEXANDER M A. Twentieth century tropical sea surface temperature trends revisited [J]. Geophysical Research Letters,2010,37(10): L10701.
DESER C,PHILLIPS A S,ALEXANDER M A. Twentieth century tropical sea surface temperature trends revisited [J]. Geophysical Research Letters,2010,37(10): L10701.
40 FaSULLO J T,PHILLIPS A S,DESER C. Evaluation of leading modes of climate variability in the CMIP archives [J]. Journal of Climate,2020,33(13): 5 527-5 545.
FaSULLO J T,PHILLIPS A S,DESER C. Evaluation of leading modes of climate variability in the CMIP archives [J]. Journal of Climate,2020,33(13): 5 527-5 545.
[1] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[2] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
阅读次数
全文


摘要