Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (4): 342-352    DOI: 10.11867/j.issn.1001-8166.2017.04.0342
论文     
海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响
吴波1, 周天军1, 2, 孙倩3
1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;
2.中国科学院大学,北京 100049;
3.成都信息工程大学大气科学学院,四川 成都 610225
Impacts of Initialization Schemes of Oceanic States on the Predictive Skills of the IAP Near-Term Climate Prediction System
Wu Bo1, Zhou Tianjun1, 2, Sun Qian3
1.LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;
2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.College of Atmospheric Science,Chengdu University of Information Technology, Chengdu 610225,China
 全文: PDF(1079 KB)   HTML
摘要:

基于耦合气候系统模式FGOALS-s2的中国科学院大气物理研究所(IAP)近期气候预测系统(以下简称IAP DecPreS系统)发展了2种初始化方法:第一种采用Incremental Analysis Update(IAU)方案同化格点化的海洋温度和盐度客观分析资料EN3;第二种采用集合最优差值(EnOI)结合IAU(EnOI-IAU)的方案同化原始海洋温度和盐度观测廓线资料EN4。主要目的是比较基于2种初始化方案开展的年代际预测试验的技巧。时间相关系数、均方根技巧评分等指标均表明,基于EnOI-IAU方案的回报试验对与太平洋年代际振荡(PDO)有关的北太平洋海表面温度(SST)的回报技巧显著高于基于IAU方案的回报试验。而对于大西洋多年代际振荡(AMO),EnOI-IAU方案回报试验的技巧低于IAU方案回报试验。AMO存在副极地和热带北大西洋2个活动中心,EnOI-IAU方案在热带中心的技巧仅略低于IAU方案,但是它在热带外区域模拟出了虚假的降温趋势,因此技巧远低于后者。

关键词: 平均气候极端气候全球增暖环流变化集成分析年代际预测耦合气候系统模式大西洋多年代际振荡太平洋年代际振荡    
Abstract:

Based on the near-term climate prediction system of the Institute of Atmospheric Physics (hereafter IAP-DecPreS), we developed two distinct initialization schemes for the Coupled Global Climate Models (CGCM), FGOALS-s2. The first scheme used the Incremental Analysis Update (IAU) to assimilate gridded oceanic temperature and salinity data derived from the EN3 dataset. The second scheme used the merge of the ensemble optimal interpolation (EnOI) and IAU scheme (hereafter EnOI-IAU) to assimilate raw observational oceanic temperature and salinity profiles. The predictive skills of the decadal prediction experiments based on the two schemes were compared. Several metrics including temporal correlation and root mean square skills score indicate that the experiment based on the EnOI-IAU shows significantly higher predictive skills in the Sea Surface Temperature (SST) anomalies in the North Pacific associated with the Pacific Decadal Oscillation (PDO), than the experiment based on the IAU. In contrast, for the Atlantic Multi-Decadal Oscillation (AMO), the predictive skills of the experiment based on the EnOI-IAU are lower than that based on the IAU. The AMO has two activity centers, located in the subpolar and tropical North Atlantic. The skills of the experiment based on the EnOI are close to that based on the IAU in the tropical North Atlantic, while much lower than the latter in the extratropical region due to a false simulation of the warming trend in the region.

Key words: Mean climate    Extreme climate    Global warming    Change of circulation    Integrated analysis.    Coupled GCM    AMO.    PDO    Decadal prediction
收稿日期: 2016-10-23 出版日期: 2017-04-20
ZTFLH:  P467  
基金资助:

公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012); 国家自然科学基金项目“以大西洋多年代际振荡作为主要预报因子的夏季北半球热带外气候年代际预测研究”(编号:41675089)资助

作者简介: 吴波(1982-),男,安徽合肥人,副研究员,主要从事气候动力学研究.E-mail:wubo@mail.iap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴波
钱维宏
周天军
孙倩
张玮玮
符娇兰
林祥

引用本文:

吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.

Wu Bo, Zhou Tianjun, Sun Qian. Impacts of Initialization Schemes of Oceanic States on the Predictive Skills of the IAP Near-Term Climate Prediction System. Advances in Earth Science, 2017, 32(4): 342-352.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.04.0342        http://www.adearth.ac.cn/CN/Y2017/V32/I4/342

[1] Kirtman B, Power S B, Adedoyin J A, et al . Near-term climate change: Projections and predictability[C]∥Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
[2] Meehl G A, Goddard L, Murphy J, et al . Decadal prediction: Can it be skillful?[J]. Bulletin of the American Meteorological Society , 2009, 90(10):1 467-1 485.
[3] Meehl G A, Goddard L, Boer G, et al . Decadal climate prediction: An update from the trenches[J]. Bulletin of the American Meteorological Society , 2014, 95(2):243-267.
[4] Liu Z. Dynamics of interdecadal climate variability: A historical perspective[J]. Journal of Climate , 2012, 25(6):1 963-1 995.
[5] Doblas-Reyes F J, Andreuburillo I, Chikamoto Y, et al . Initialized near-term regional climate change prediction[J]. Nature Communication , 2013, 4(7):1 078-1 090.
[6] García-Serrano J, Guemas V, Doblas-Reyes F J. Added-value from initialization in predictions of Atlantic multi-decadal variability[J]. Climate Dynamics , 2015, 44(9/10):25-30.
[7] Meehl G A, Teng H. Case studies for initialization decadal hindcasts and predictions for the Pacific region[J]. Geophysical Research Letters , 2012, 39(22):20 813-20 821.
[8] Mochizuki T, Masuda S, Ishikawa Y, et al . Multi-year climate prediction with initialization based on 4D-Var data assimilation[J]. Geophysical Research Letters , 2016, 43(8): 3 903-3 910.
[9] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society , 2012, 93(4):485-498.
[10] Xin X G, Wu T W, Zhang J. Introduction of CMIP5 experiments carried out with the Climate system models of Beijing Climate Center[J]. Advances in Climate Change Research , 2013, 4(1):41-49.
[11] Gao Feng, Xin Xiaoge, Wu Tongwen. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 Model[J]. Chinese Journal of Atmospheric Sciences , 2012, 36(6):1 165-1 179.
. 大气科学, 2012, 36(6):1 165-1 179.]
[12] Wang B, Liu M, Yu Y, et al . Preliminary evaluations of FGOALS-g2 for decadal predictions[J]. Advances in Atmospheric Sciences , 2013, 30(3):674-683.
[13] Wu B, Zhou T J. Prediction of decadal variability of sea surface temperature by a coupled global climate model FGOALS_gl developed in LASG/IAP[J]. Chinese Science Bulletin , 2012, 57(19):2 453-2 459.
[14] Bao Q, Lin P F, Zhou T J, et al . The flexible global Ocean-Atmosphere-Land System model Version: FGOALS-s2[J]. Advances in Atmospheric Sciences , 2013, 30(3):561-576.
[15] Collins W D, Bitz C M, Blackmon M L, et al . The Community Climate System Model version 3 (CCSM3)[J]. Journal of Climate , 2006, 19(11):2 122-2 143.
[16] Liu H L, Lin P F, Yu Y Q, et al . The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0[J]. Journal of Meteorological Research , 2012, 26(3):318-329.
[17] Lin P F, Yu Y Q, Liu H L. The mean state of oceanic circulation simulated by the Coupled Model FGOALS-s2[J]. Advances in Atmospheric Sciences , 2013, 30(3):175-192.
[18] Oleson K W, Dai Y J, Bonan G B, et al . Technical Description of the Community Land Model (CLM)[M]∥Colorado: National Center for Boulder, Atmospheric Research,2004:256-265.
[19] Guinehut S, Coatanoan C, Dhomps A L, et al . On the use of satellite altimeter data in Argo quality control[J]. Journal of Atmospheric and Oceanic Technology , 2009, 26(2):395-402.
[20] Wu B, Chen X L, Song F F, et al . Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses[J]. Advances in Meteorology , 2015, (6):1-12.
[21] Bloom S C. Data assimilation using incremental analysis updates[J]. Monthly Weather Review , 1996, 124(6):1 256.
[22] Good S A, Martin M J, Rayner N A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research : Oceans , 2013, 118(12): 6 704-6 716.
[23] Rayner N A, Parker D E, Horton E B, et al . Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research Atmospheres , 2003, 108(D14):1 063-1 082.
[24] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics , 2003, 53(4):343-367.
[25] Oke P R, Allen J S, Miller R N, et al . Assimilation of surface velocity data into a primitive equation coastal ocean model[J]. Journal of Geophysical Research Oceans , 2002, 107(C9):5-1-5-25.
[26] Eifuku R, Yoshino I, Pohlmann I S. A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction[J]. Climate Dynamics , 2013, 41(11/12):3 325-3 338.
[27] CLIVAR. Data and Bias Correction for Decadal Climate Predictions[R].Qingdao: International CLIVAR Project Office, 2011.
[28] Doblas-Reyes F J, Andreuburillo I, Chikamoto Y, et al . Initialized near-term regional climate change prediction[J]. Nature Communications , 2013, 4(7):1 078-1 090.
[29] Wilks D S. Statistical methods in the atmospheric sciences[M]∥Statistical Methods in the Atmospheric Sciences. Elsevier, 2011:183-197.
[30] Morice C P, K ennedy J J, Rayner N A, et al . Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset[J]. Journal of Geophysical Research Atmospheres , 2012, 117(D8):393-407.
[31] Easterling D R, Wehner M F. Is the climate warming or cooling?[J]. Geophysical Research Letters , 2009, 36(8):262-275.
[32] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature , 2013, 501(7 467):403-407.
[33] Newman M, Alexander M A, Ault T R, et al . The Pacific decadal oscillation, Revisited[J]. Journal of Climate , 2016, 29(12):4 399-4 427.
[34] Mantua N J, Hare S R, Zhang Y, et al . A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society , 1997, 78(6):1 069-1 079.
[35] Delworth T, Zhang L R, Mann M E. Decadal to centennial variability of the Atlantic from observations and models. Ocean circulation: Mechanisms and impacts[J]. Geophysical Monograph Series , 2007, 173:131-148.
[36] Kilbourne K H, Quinn T M, Webb R, et al . Paleoclimate proxy perspective on Caribbean climate since the year 1751: Evidence of cooler temperatures and multidecadal variability[J]. Paleoceanography , 2008, 23(3):764-767.
[37] Trenberth K E, Shea D J. Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters , 2006, 33(33):285-293.
[38] Gastineau G, Frankignoul C. Influence of the North Atlantic SST Variability on the Atmospheric Circulation during the Twentieth Century[J]. Journal of Climate , 2015, 28(4):1 396-1 416.
[39] Smith D, Eade R, Pohlmann H. A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction[J]. Climate Dynamics , 2013, 40:3 325-3 338.

[1] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[2] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[3] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[4] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[5] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[6] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[7] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
[8] 王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.
[9] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[10] 钱维宏,符娇兰,张玮玮,林祥. 近40年中国平均气候与极值气候变化的概述[J]. 地球科学进展, 2007, 22(7): 673-684.
[11] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.