Please wait a minute...
img img
地球科学进展  2017, Vol. 32 Issue (4): 396-408    DOI: 10.11867/j.issn.1001-8166.2017.04.0396
韩振宇1, 吴波2, 辛晓歌1
1.中国气象局 国家气候中心,北京 100081;
2.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
Decadal Prediction Skill of the Global Sea Surface Temperature in the BCC_CSM1.1 Climate Model
Han Zhenyu1, Wu Bo2, Xin Xiaoge1
1. National Climate Center, China Meteorological Administration, Beijing 100081, China;
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF(1205 KB)   HTML


关键词: BCC_CSM1.1全球海表温度年代际预测热盐环流    

This study assesses retrospective decadal prediction skill of Sea Surface Temperature (SST) variability in initialized climate prediction experiments (INT) with the Beijing Climate Center Climate System Model (BCC_CSM1.1). Ensemble forecasts were evaluated using observations, and compared to an ensemble of uninitialized simulations (NoINT). The results show as follows: ①The warming trend of global mean SST simulated by the INT runs is closer to the observation than that in the NoINT runs.②The INT runs show high SST prediction skills over broad regions of tropical Atlantic, western tropical Pacific and tropical Indian Oceans. ③ In the North Pacific and the east-central tropical Pacific Ocean, the prediction skills are very weak, and there are few improvements coming from the initialization in the INT runs. ④ In the southern Indian Ocean, the prediction skills of the INT runs are significantly larger than that of the NoINT runs, with the maximum skill at the 3~6 and 4~7 years lead time. The above-mentioned conclusions are similar to the results of other climate models. However, the prediction skill in the North Atlantic Ocean is much lower than that of other models, especially in the subpolar region. The low skills in the Atlantic Ocean may be attributed to the misrepresentation of the lead-lag relationship between the Atlantic meridional heat transport and the SST in the BCC_CSM1.1.

Key words: Decadal prediction    Thermohaline circulation.    Global sea surface temperature    BCC_CSM1.1
收稿日期: 2016-10-17 出版日期: 2017-04-20
ZTFLH:  P467  

公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012); 中国气象局LCS气候研究开放课题青年基金2016年度资助项目“BCC_CSM1.1模式对中国近期气候的预测能力研究”资助

作者简介: 韩振宇(1987-),男,山西原平人,副研究员,主要从事气候模拟和季风变率研究
E-mail Alert


韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.

Han Zhenyu, Wu Bo, Xin Xiaoge. Decadal Prediction Skill of the Global Sea Surface Temperature in the BCC_CSM1.1 Climate Model. Advances in Earth Science, 2017, 32(4): 396-408.


[1] Xiong Wei, Feng Lingzhi, Ju Hui, et al . Possible impacts of high temperatures on China’s rice yield under climate change[J] . Advances in Earth Science , 2016, 31(5): 515-528.
. 地球科学进展, 2016, 31(5): 515-528.]
[2] Shi Peijun, Wang Aihui, Sun Fubao, et al . A study of global change population and economic system risk forming mechanism and assessment[J]. Advances in Earth Science , 2016, 31(8): 775-781.
. 地球科学进展, 2016, 31(8): 775-781.]
[3] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society , 2012, 93(4): 485-498.
[4] Gao Feng, Xin Xiaoge, Wu Tongwen. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1. 1 model[J]. Chinese Journal of Atmospheric Sciences , 2012, 36(6): 1 165-1 179.
. 大气科学, 2012, 36(6): 1 165-1 179.]
[5] Wang Bin, Liu Mimi, Yu Yongqiang, et al . Preliminary evaluations of FGOALS-g2 for decadal predictions[J]. Advances in Atmospheric Sciences , 2013, 30(3): 674-683.
[6] Wu Bo, Zhou Tianjun. Prediction of decadal variability of sea surface temperature by a coupled global climate model FGOALS_gl developed in LASG/IAP[J]. Chinese Science Bulletin , 2012, 57(19): 2 453-2 459.
[7] Wu Bo, Chen Xiaolong, Song Fengfei, et al . Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses[J]. Advances in Meteorology , 2015, doi:10.1155/2015/904826.
[8] Kim H, Webster P J, Curry J A. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts[J]. Geophysical Research Letters , 2012, 39(10): L10701, doi:10.1029/2012GL051644.
[9] Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y, et al . Initialized near-term regional climate change prediction[J]. Nature communications , 2013, 4: 1 715, doi:10.1038/ncomms2704.
[10] Guemas V, Corti S, García-Serrano J, et al . The Indian Ocean: The region of highest skill worldwide in decadal climate prediction[J]. Journal of Climate , 2013, 26(3): 726-739.
[11] Karspeck A, Yeager S, Danabasoglu G, et al . An evaluation of experimental decadal predictions using CCSM4[J]. Climate Dynamics , 2015, 44(3/4): 907-923.
[12] Mignot J, García-Serrano J, Swingedouw D, et al . Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model[J]. Climate Dynamics , 2016, 47(3):1 225-1 246.
[13] Shaffrey L C, Hodson D, Robson J, et al . Decadal predictions with the HiGEM high resolution global coupled climate model: Description and basic evaluation[J]. Climate Dynamics , 2016,doi:10.1007/s00382-016-3075-x.
[14] Chen Weilin, Jiang Zhihong. Evaluation of the decadal prediction skill over China based on four global atmosphere-ocean coupled climate models[J]. Climatic and Environmental Research , 2012, 17(1): 81-91.
. 气候与环境研究, 2012, 17(1): 81-91.]
[15] Zhou Xin, Li Qingquan, Sun Xiubo, et al . Simulation and projection of temperature in China with BCC_CSM1. 1 model[J]. Journal of Applied Meterological Science , 2014, 25(1): 95-106.
.应用气象学报, 2014, 25(1): 95-106.]
[16] Wei Linxiao, Xin Xiaoge, Cheng Bingyan, et al . Hindcast of China climate with decadal experiment by BCC_CSM1.1 climate model[J]. Advances in Climate Change Research , 2016, 12(4): 294-302.
. 气候变化研究进展, 2016, 12(4): 294-302.]
[17] Luo Feifei, Li Shuanglin. Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature[J]. Science in China ( Series D ), 2014, 57(12): 3 062-3 072, doi:10.1007/s11430-014-4984-3.
. 中国科学: D辑, 2015, 45(4):402-413.]
[18] Xin Xiaoge, Wu Tongwen, Zhang Jie. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research , 2013, 4(1): 41-49.
. 气候变化研究进展, 2012, 8(5): 378-382.]
[19] Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review , 2008, 136(8): 2 999-3 017.
[20] Rayner N A, Parker D E, Horton E B, et al . Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research : Atmospheres , 2003, 108(D14): 4 407, doi:10.1029/2002JD002670.
[21] lato G, Marotzke J, Abiodun B, et al . Evaluation of climate models[M]∥Stocker T F, et al , eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 741-866.
[22] Goddard L, Kumar A, Solomon A, et al . A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics , 2013, 40(1/2): 245-272.
[23] ICPO (International CLIVAR Project Office). Decadal and Bias Correction for Decadal Climate Predictions[R/OL]. International CLIVAR Project Office, 2011, CLIVAR Publication Series No. 150.[2016-12-20].http:∥
[24] Knight J R, Allan R J, Folland C K, et al . A signature of persistent natural thermohaline circulation cycles in observed climate[J]. Geophysical Research Letters , 2005, 32(20): L20708, doi:10.1029/2005GL024233.
[25] Msadek R, Frankignoul C. Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model[J]. Climate Dynamics , 2009, 33(1): 45-62.
[26] Cheng Wei, Chiang J C H, Zhang Dongxiao. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations[J]. Journal of Climate , 2013, 26(18): 7 187-7 197.
[27] Zhang Liping, Wang Chunzai. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations[J]. Journal of Geophysical Research : Oceans , 2013,118(10): 5 772-5 791.
[28] Zhang Rong. Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations[J]. Geophysical Research Letters , 2010, 37(16): L16703, doi:10.1029/2010GL044474.
[29] Zhou Tianjun, Chen Xiaolong, Dong Lu, et al . Chinese contribution to CMIP5: An overview of five Chinese models’ performances[J]. Journal of Meteorological Research , 2014, 28(4): 481-509.
[30] Han W, Vialard J, McPhaden M J, et al . Indian Ocean decadal variability: A review[J]. Bulletin of the American Meteorological Society , 2014, 95(11): 1 679-1 703.
[31] Dong Lu, Zhou Tianjun, Dai Aiguo, et al . The footprint of the inter-decadal pacific oscillation in Indian Ocean sea surface temperatures[J]. Scientific Reports , 2016, 6: 21 251, doi:10.1038/srep21251.

[1] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[2] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[3] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[4] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[5] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[6] 周天军,张学洪,刘海龙. 大洋环流模式的温盐表面边界条件处理及其影响研究评述[J]. 地球科学进展, 2009, 24(2): 111-122.
[7] 刘宇,管玉平,林一骅. 大洋热盐环流研究的一个焦点:北太平洋是否有深水形成[J]. 地球科学进展, 2006, 21(11): 1185-1192.