地球科学进展 ›› 2017, Vol. 32 ›› Issue (4): 353 -361. doi: 10.11867/j.issn.1001-8166.2017.04.0353

上一篇    下一篇

IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响
满文敏 1, 2( ), 周天军 1, 3   
  1. 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2.江苏省气候变化协同创新中心,江苏 南京 210023
    3.中国科学院大学,北京 100049
  • 收稿日期:2016-12-09 修回日期:2017-02-10 出版日期:2017-04-20
  • 基金资助:
    公益性行业(气象)科研专项项目“基于FGOALS-s、CMA 和 CESM 气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);国家自然科学基金项目“火山气溶胶对全球和东亚夏季风影响的模拟研究”(编号:41675082)资助

The Impact of Volcanic Eruption on Decadal-Scale Climate Prediction Skill of Pacic Sea Surface Temperatures in the IAP Near-Term Climate Prediction System(IAP DecPreS)

Wenmin Man 1, 2( ), Tianjun Zhou 1, 3   

  1. 1.LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China
    2.Jiangsu Collaborative Innovation Center for Climate Change,Nanjing 210023,China
    3.University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2016-12-09 Revised:2017-02-10 Online:2017-04-20 Published:2017-04-20
  • About author:

    First author:Man Wenmin (1985-), female, Xuzhou City, Jiangsu Province, Associate Professor. Research areas include monsoon variability and climate modelling.E-mail:manwenmin@mail.iap.ac.cn

  • Supported by:
    Foundation item:Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CMA and CESM” (No.GYHY201506012);The National Natural Science Foundation of China “Global monsoon precipitation and East Asian summer monsoon responses to large volcanic eruptions” (No.41675082)

火山活动是影响全球气候变化的重要自然因子。在年代际预测试验中加入火山气溶胶强迫会带来火山爆发后短期内气候响应回报技巧的改变。基于耦合气候系统模式FGOALS-s2的中国科学院大气物理研究所年代际气候预测试验(DP-EnOI-IAU试验)结果,分析了火山活动对太平洋海温年代际预测技巧的影响。DP-EnOI-IAU试验引入了平流层火山气溶胶的辐射外强迫变化,在模拟的1960—2005年共发生4次强的热带火山爆发事件。结果表明,DP-EnOI-IAU试验在多数年份对太平洋海温具有显著的预测技巧,但预测技巧在1982年El Chichon火山爆发和1991年Pinatubo火山爆发后显著下降。模式对火山爆发后ENSO位相的模拟偏差导致了其对太平洋海温年代际预测技巧的下降。对于1982年El Chichon火山爆发,在火山爆发峰值时期和第3年冬季,赤道中东太平洋均表现出与观测相反的海温型响应,使得DP-EnOI-IAU试验对太平洋海温的年代际预测技巧显著下降。在1991年Pinatubo火山爆发后的秋冬季和第3年冬季,观测和模拟的热带海温型亦相反,模式对1991年火山爆发后太平洋海温的预测技巧降低。相对于1982年El Chichon和1991年Pinatubo火山爆发,模式对1963年Agung火山爆发后热带海温型响应的模拟与观测较为一致,此次火山爆发没有带来太平洋海温预测技巧的显著下降。

Explosive volcanic eruptions are known to be a leading cause of natural climate change. There has been a growing recognition that there is a measurable climate system response even to moderate-sized volcanic eruptions. In this study, we investigated the hindcast skills of the Pacific Sea Surface Temperatures (SSTs) using the hindcast experiments based on the near-term climate prediction system DecPreS developed by the Institute of Atmospheric Physics (IAP)(hereafter DP-EnOI-IAU experiments). The DP-EnOI-IAU experiments were run for initial years from 1960 to 2005. These hindcasts took into account observed stratospheric aerosol concentrations that included the four large tropical volcanic eruptions during that period. The time evolution over the entire hindcast period for skill in predicting the patterns of the 3~7 year prediction averages for Pacific SSTs showed that there was statistically significant skill for most years except for a dramatic drop in skill during the 1980s and 1990s. Decadal hindcast skill is reduced if the post-eruption model response deviates the internal El Niño variability in the observations. The simulations showed a post-eruption SST of a La Niña-like pattern in the third northern winter after the 1982 El Chichon eruption and a El Niño-like pattern after the 1991 Pinatubo eruption, which were opposite in sign to what was in the observations. This lead to the loss of hindcast skill for years in the 1980s and 1990s affected by the eruptions. Agung (1963) happened to have post-eruption Pacific SSTs more similar to the observations and thus did not degrade prediction skill in the hindcasts.

中图分类号: 

图1 太平洋区域(40°S~70°N,100°E~80°W)年平均海温异常与观测的空间相关系数
红线为DP-EnOI-IAU试验回报的太平洋区域(40°S~70°N,100°E~80°W)年平均海温异常与对应观测的空间相关系数随时间的演变,所有点在时间轴上的位置是回报年3~7年的中间年份,代表回报年3~7年的平均(例如1960年回报的3~7年海温为1962—1966年平均,在时间轴上对应的年份为1964年);蓝色虚线为持续预测,定义为观测中回报年前5年的海温异常(代表回报年3~7年的平均)与对应观测的空间相关系数。黑色三角形代 表4 次强的热带火山爆发事件,分别是1963年Agung,1974年Fuego,1982年El Chichon,和1991年Pinatubo火山爆发
Fig.1 Anomaly pattern correlations of the annual mean SST over the Pacific Ocean region (40°S~70°N,100°E~80°W) for the predictions and corresponding observations
Anomaly pattern correlations plotted as a function of the central year of the 3~7 year hindcast predictions, Pacific Ocean region (40°S~70°N,100°E~80°W), ocean points only, for initial years starting in 1960 (red line is DP-EnOI-IAU, blue dashed line is persistence prediction de?ned as the average of years 3~7 in the future having the same climate anomalies as the 5 year average prior to the start of the prediction; central year of the 3~7 year hindcast is plotted, so the value for initial year 1960 for prediction 1962-1966 is plotted for 1964, etc.), peak volcano periods are noted by triangles labeled for the large tropical volcanic eruptions (the eruptions were Agung (1963), Fuego (1974), El Chichon (1982), and Pinatubo (1991))
图2 观测和DP-EnOI-IAU试验预测的1982年El Chichon火山爆发后海温异常分布
(a)观测中1982年El Chichon火山爆发峰值(1982年12月、1983年1~2月,1982D1983JF)的海温异常(℃);(b)同(a),但为火山爆发峰值后秋冬季(1983 SONDJF)的海温异常;(c)同(a),但为火山爆发峰值后第3个冬季(1985 DJF)的海温异常;海温异常为相对于火山爆发前5年平均的异常值.(d)~(f)同(a)~(c)但为DP-EnOI-IAU试验的海温异常.黑框区域为赤道东太平洋区域(10°S~10°N,170°E~90°W)
Fig.2 Observed SST anomalies from the HadISST and the initialized predictions of DP-EnOI-IAU for the 1982 El Chichon eruption
Observed SST anomalies from the HadISST for (a) the peak of the 1982 El Chichon eruption (December (D), 1982, January-February (JF), 1983); (b) the SONDJF average after the peak of the eruption (1983); (c) the third DJF after the eruption peak (1985);(d)~(f) as (a)~(c)Initialized predictions from DP-EnOI-IAU, SST anomalies (℃) (all relative to 5 years before each eruption) for eruption peak (d), SONDJF average after the eruption peak (b), and the third DJF after the eruption (f). The dashed box in each panel denotes the eastern tropical Pacific from 10°S~10°N,170°E~90°W
图3 观测和DP-EnOI-IAU试验预测的1991年Pinatubo火山爆发后海温异常分布
(a)观测中1991年Pinatubo火山爆发峰值(1992年1~3月,1992 JFM)的海温异常;(b)同(a),但为火山爆发峰值后秋冬季(1992 SONDJF)的海温异常;(c)同(a),但为火山爆发峰值后第3个冬季(1994 DJF)的海温异常;(d)~(f)同(a)~(c),但为DP-EnOI-IAU试验的海温异常;黑框区域为赤道东太平洋区域(10°S~10°N,170°E~90°W)
Fig.3 Observed SST anomalies from the HadISST and the initialized predictions of DP-EnOI-IAU for the 1991 Pinatubo eruption
Observed SST anomalies from the HadISST for (a) the peak of the 1991 Mount Pinatubo eruption (January, February, and March (JFM), 1992);(b) the SONDJF average after the peak of the eruption (1992),and (c) the third DJF after the eruption peak (1994),(℃); (d)~(f) as(a)~(c):Initialized predictions from FGOALS-s2, SST anomalies (℃) (all relative to 5 years before each eruption) for eruption peak (d),SONDJF average after the eruption peak (e), and the third DJF after the eruption (f); The dashed box in each paneldenotes the eastern tropiallpalific from 10°S~10°N,170°E~90°W
图4 赤道东太平洋区域(10°S~10°N,170°E~90°W)区域平均的海温异常的PDF分布
柱状为CESM1 42个集合成员在赤道东太平洋区域(10°S~10°N,170°E~90°W, 图2 中的黑框区域)区域平均的海温异常的PDF分布,(a)~(c)为1963年Agung火山爆发,(d)~(f)为1982年El Chichon火山爆发,(g)~(i)为1991年Pinatubo火山爆发;蓝线为DP-EnOI-IAU试验结果,红线为观测,黑线右侧代表类(g)~(i)El Niño响应,左侧代表类La Niña响应
Fig.4 The histograms for an SST area average in the eastern tropical Pacific from 10°S~10°N, 170°E~90°W
The histograms for an SST area average in the eastern tropical Pacific from 10°S~10°N, 170°E~90°W, coutline shown in Fig.2 , from the CESM142 member large ensemble for (a)~(c) Agung, (d)~(f) El Chichon, and (g)~(i) Pinatubo. DP-EnOI-IAU is vertical blue line,observed is vertical red line, zero line for the model distribution is vertical black line denoting El Niño-like responseto the right of dotted line and La Niña-like response to left
[1] Schurer A P, Tett S F B, Hegerl G C. Small influence of solar variability on climate over the past millennium[J]. Nature Geoscience, 2014,7: 104-108, doi:10.1038/NGE02040.
[2] Shi Guangyu.The Atmospheric Radiation[M]. Beijing: Science Press, 2007.
[石广玉. 大气辐射学[M]. 北京: 科学出版社, 2007.]
[3] Robock A, Mao J.The volcanic signal in surface temperature observations[J]. Journal of Climate, 1995, 8: 1 086-1 103.
[4] Robock A.Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191-219, doi:10.1029/1998RG000054.
[5] Kosaka Y, Xie S P.Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7 467): 403-407.
[6] Meehl G A, Arblaster J M, Fasullo J T, et al.Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods[J]. Nature Climate Change, 2011, 1(7): 360-364.
[7] Santer B D, Bonfils C, Painter J F, et al.Volcanic contribution to decadal changes in tropospheric temperature[J].Nature Geoscience, 2014, 7: 185-189, doi:10.1038/ngeo2098.
[8] IPCC. Climate change 2013:The physical science basis[M]∥Stocker T F,Qin D,Plattner G-K,et al,eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York: Cambridge University Press,2013.
[9] Meehl G, Teng H.CMIP5 multi-model initialized decadal hindcasts for the mid-1970s shift and early-2000s hiatus and predictions for 2016-2035[J]. Geophysical Research Letters, 2014, 41(5): 1 711-1 716, doi:10.1002/2014GL059256.
[10] Meehl G, Teng H, Maher N, et al.Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures[J]. Geophysical Research Letters, 2015, 42(24): 10 840-10 846, doi:10.1002/2015GL066608.
[11] Timmreck C, Pohlmann H, Illing S, et al.The impact of stratospheric volcanic aerosol on decadal-scale climate predictions[J]. Geophysical Research Letters, 2016, 43(2): 834-842, doi:10.1002/2015GL067431.
[12] Wu B, Chen X, Song F, et al.Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses[J]. Advances in Meteorology, 2015,doi:10.1155/2015/904826.
[13] Wu Bo, Zhou Tianjun, Sun Qian.Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system[J].Advances in Earth Science,2017, 32(4): 342-352.
[吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响].地球科学进展,2017, 32(4):342-352.]
[14] Bao Q, Lin P, Zhou T, et al.The flexible global Ocean-Atmosphere-Land System model Version: FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 561-576.
[15] Liu H, Lin P, Yu Y, et al.The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0[J]. Journal of Meteorological Research, 2012, 26(3): 318-329.
[16] Oleson K, Dai Y, Bonan G, et al.Technical Description of the Community Land Model (CLM)[Z]. NCAR Technical Notes, 2004,doi:10.5065/D6N877R0.
[17] Briegleb B, Bitz C, Hunke E, et al.Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three[Z]. NCAR Technical Notes,2004,doi:10.5065/D6HH6H1P.
[18] Wu B, Zheng F, Zhou T. Improved initialization on oceanic states for climatepredictions by a coupled general circulation model FGOALS-s2[J].Journal of Advanices in Modeling Earth System,2017, in press.
[19] Kay J,Deser C, Phillips A, et al.The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability[J]. Bulletin of the American Meteorological Society, 2015, 96: 1 333-1 349, doi:10.1175/BAMS-D-13-00255.1.
[20] Rayner N, Parker D, Horton E,et al.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres,2003,108(D14): 4 407, doi:10.1029/2002JD002670.
[21] Adams J B, Mann M E, Ammann C M.Proxy evidence for an El Niño—Like response to volcanic forcing[J]. Nature, 2003, 426: 274-278, doi:10.1038/nature0210.
[22] Mann M E, Cane M A, Zebiak S E, et al.Volcanic and solar forcing of the tropical Pacific over the past 1000 years[J]. Journal of Climate, 2005, 18: 447-456.
[23] Man W M, Zhou T J,Jungclaus J H.Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millennium:Analysis of MPI-ESM simulations[J]. Journal of Climate, 2014, 27(19): 7 394-7 409.
[24] Maher N, McGregor S, England M H, et al. Effects of volcanism on tropical variability[J]. Geophysical Research Letters, 2015, 42(14): 6 024-6 033, doi:10.1002/2015GL064751.
[25] Zanchettin D, Bothe O, Graf H F, et al.Background conditions influence the decadal climate response to strong volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10):4 090-4 106, doi:10.1002/jgrd.50229.
[26] Ohba M, Shiogama H, Yokohata T, et al.Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM[J]. Journal of Climate, 2013, 26: 5 169-5 182,doi:10.1175/JCLI-D-12-00471.1.
[1] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[2] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[3] 田白. 白云岩化研究的新进展——火山作用与白云岩化的关系[J]. 地球科学进展, 1991, 6(4): 51-52.
阅读次数
全文


摘要