地球科学进展 ›› 2019, Vol. 34 ›› Issue (8): 868 -878. doi: 10.11867/j.issn.1001-8166.2019.08.0868

研究论文 上一篇    下一篇

走滑应变椭圆模型的改进及应用举例
邓辉( ),李果营,杨海风,温宏雷,张参   
  1. 中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300459
  • 收稿日期:2019-03-06 修回日期:2019-07-15 出版日期:2019-08-10
  • 基金资助:
    国家重大科技专项项目“渤海海域勘探新领域及关键技术研究”(2016ZX05024-003);中海石油(中国)有限公司科技项目“渤海东部走滑断裂带控藏机理研究与有利勘探目标预测”(YXKY-2017-TJ-01)

Improvement and Application of Riedel Shear Systerm

Hui Deng( ),Guoying Li,Haifeng Yang,Honglei Wen,Can Zhang   

  1. Bohai Oil Reseach Institute, Tianjin Branch of China National Offshore Oil Corporation, Tianjin 300459, China
  • Received:2019-03-06 Revised:2019-07-15 Online:2019-08-10 Published:2019-10-11
  • About author:Deng Hui (1987-), male, Yichuan County, Shaanxi Province, Engineer. Research areas include basin tectonics.
  • Supported by:
    the National Major Science and Technology Project "Research on new areas and key technologies of exploration in Bohai Sea area"(2016ZX05024-003);The China National Petroleum(China);Ltd. Science and Technology Project "Reservoir control mechanism of strike-slip fault zone in Eastern Bohai Sea and prediction of favorable exploration targets"(YXKY-2017-TJ-01)

剪切带带内某些次级应变与现有走滑应变椭圆的7类应变要素(PDZ,R,R′,P,T,Y破裂及局部挤压变形)难以准确对应。为解决这一问题,以右行走滑为例,通过理论推导与试验模拟,深入研究次级应变表现出的应变性质,并据此提出包含所有应变性质组合(8类)的完全分类模型。该模型包括4个单纯性质的应变带(纯右行走滑、纯左行走滑、纯挤压和纯伸展应变带)和4个复合性质的应变区(伸展兼右行走滑、伸展兼左行走滑、挤压兼左行走滑和挤压兼右行走滑应变区)。复合性质应变区中,越靠近单纯性质方向的应变,产生相应性质的动力就越强。该模型在理论上论证了传统走滑模型的合理性并弥补其空缺部分。同时,举3个渤海的研究实例说明该模型改进后的应用: 莱州湾凹陷东北洼挤压与伸展作用共控成圈,说明走滑带内的挤压与伸展应力场同步持续、相互垂直的时空关系,以及二者的统一而非矛盾的辩证关系; 渤海走滑转换带的研究成果,说明走滑带内伸展或挤压型转换带的应变走向规律; 渤海某潜山油田的有效裂缝研究成果,说明有效裂缝的走向与现今走滑应力场中的伸展应变区对应的关系。

For some strain in the strike slip zone is difficult to be determined accurately in the classification scheme of the 7 elements of the ellipse of the strike slip strain ellipse (PDZ, R, R', P, T, Y and local contraction), the properties of the strain elements in all directions in the strained ellipse were reunderstood by analyzing the causal relationship between the mechanical state and the strain properties in a certain direction. A new model of the Riedel shear system was proposed, which contained 4 pure strain zones (pure right walk slip, pure left walking slip, pure extrusion, pure Stretch Strain Zone) and 4 complex strain zones (both stretching and right walking, both stretching and left walking, both extrusion and left walking, both extrusion and right walking slip strain zone). The closer the crack was to the direction of a single strain band, the stronger the corresponding property. The model included all the elements of the traditional model and made up for its vacancy. It proved the rationality of the left (right) row left (right) order and the double tectonic belt rule. At the same time, three research examples of Bohai Sea were cited to illustrate the application of the model: (1) The synchronous and perpendicular spatial-temporal relationship between compressive and extensional stress fields in strike-slip zones, as well as the unified but not contradictory dialectical relationship between them, were illustrated through the example of the co-controlled cycle formation of northeastern depression in Laizhou Bay Depression; (2) The Bohai Sea walk was enumerated. The research results of the slip transition zone illustrated the strain trend law of the extensional or compressive transition zone in the strike-slip zone; (3) The relationship between the strike of the effective fracture and the extensional strain zone in the present strike-slip stress field was illustrated by giving an example of the effective fracture research results of a buried hill structure in the Bohai Sea.

中图分类号: 

图1 右行力偶产生的走滑应变椭圆[ 5 ]
Fig.1 The strike slip strain ellipse produced by the right line of force pairs [ 5 ]
图2 完全分类的走滑应变椭圆模型
Fig.2 A complete classification model for Riedel shear system
图3 右行力偶产生的合力圆
Fig.3 The resultant force circle produced by the right line couple
图4 应力及方向对应走滑性质的完全分类示意图
Fig.4 Schematic diagram of complete classification of stress and direction corresponding to strike slip property
图5 走滑应力椭圆的剪切性质分区示意图
Fig.5 Zoning of strike slip properties of a sliding stress ellipse
图 6 走滑断层转弯段的挤压与伸展性质示意图
Fig.6 Pattern of extrusion and extensional properties of strike slip fault turning section
图7 右行走滑不同角度派生破裂张、压性质示意图
Fig.7 Schematic diagram of fracture tension and pressure properties derived from different angles of right strike-slip
图8 走滑应力椭圆的断层压、张性质分区示意图
Fig.8 Zoning of the fault pressure and the tensile properties of the strike slip stress ellipse
图9 右行剪切时不同角度雁列破裂应变性质模拟结果图
Fig. 9 Simulation results of fracture strain properties of echelons with different angles under right shear
图10 右行剪切时雁列破裂应变性质随角度连续变化模拟结果图
Fig.10 Simulated experimental results of continuous variation of fracture strain properties with angle in strike-slip zone
图 11 S”型走滑增压段的物理模拟结果
Fig.11 Physical simulation results of the "S" type strike slip supercharging section
图12 辽西二号断裂围区沙一段顶面构造刚要图
Fig.12 Rigid top structural map of Sha 1 member in the Surrounding area of Liaoxi No.2 Fault
图13 莱州湾凹陷东北洼构造纲要图
Fig.13 Outline of northeast sag structure in Laizhou Bay sag
图14 走滑、伸展与挤压应变方位统计及在走滑应变椭圆中的投影图
Fig.14 Azimuth statistics of strike slip, extension and extrusion strain and projection map in strike slip strain ellipse
图15 横穿走滑释压及增压带地震剖面图(剖面位置见图13
Fig.15 Seismic profile of transverse strike-slip pressure release and booster zone(The section position is shown in Fig.13)
图16 渤海主要走滑转换带的应变性质示意图(据参考文献[ 22 ]修改)
Fig.16 Strain properties of the main strike-slip transition zones in the Bohai Sea(modified after reference[ 22 ])
1 Wilcox Ronald E , Harding T P , Seely D R . Basic wrench tectonics[J]. AAPG Bulletin, 1973, 57(1): 74-96.
2 Harding P T . Petroleum traps associated with wrench faults[J]. Bulletin of the American Association of Petroleum Geologists, 1974, 58(7): 1 290-1 304.
3 Allen Philip A , Allen John R . Basin Analysis:Principles and Application to Petroleum Play Assessment[M]. London: John Wiley & Sons, 2013.
4 Davis George H , Bump Alexander P , Garc??a Pilar E , et al . Conjugate Riedel deformation band shear zones[J]. Journal of Structural Geology, 2000, 22(2): 169-190.
5 Qi Jiafu , Xia Yiping , Yang Qiao . Structural Analysis of Oil Region[M]. Beijing: Petroleum Industry Press, 2006.
漆家福,夏义平,杨桥 . 油区构造解析[M]. 北京: 石油工业出版社, 2006.
6 Flodin Eric A , Atilla Aydin . Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada[J]. Geological Society of America Bulletin, 2004, 116(1/2): 42-59.
7 Vander Pluijm Ben A , Marshak Stephen . Earth Structure—An Introduction to Structural Geology and Tectonics[M]. New York: Norton, 2004.
8 Liu Chao , Li Wei , Wu Zhiping , et al . Development characteristics of the cenozoic fault system and basin evolution of Bonan area in Bohai Sea[J]. Geological Journal of China Universities, 2016, 22(2): 317-326.
刘超,李伟,吴智平,等 . 渤海海域渤南地区新生代断裂体系与盆地演化[J]. 高校地质学报,2016, 22(2): 317-326.
9 Huang Lei . Tectonic Characteristics and Evolution of Bohai Sea and Theri Effect on Oil and Gas Occurrence During Neogene[D]. Xi'an: Northwestern University, 2014.
黄雷 . 渤海海域新近纪以来构造特征与演化及其油气赋存效应[D]. 西安: 西北大学, 2014.
10 Richard P , Mocquet B , Cobbold R P . Experiments on simultaneous faulting and folding above a basement wrench fault[J]. Tectonophysics, 1991, 188(1): 133-141.
11 Virginie Tron , Brun Jean Pierre . Experiments on oblique rifting in brittle-ductile systems[J]. Tectonophysics, 1991, 188(1): 71-84.
12 Kamil Ustaszewski , Schumacher Markus E , Schmid Stefan M , et al . Fault reactivation in brittle-viscous wrench systems-dynamically scaled analogue models and application to the Rhine-Bresse transfer zone[J]. Quaternary Science Reviews, 2005, 24(3): 363-380.
13 Tong Hengmao , Fan Caiwei , Meng Lingjian , et al . Manifestation and origin mechanism of the fault systerm complexity in rift basin in Eastern-South China: Case study of the Nanbu and Weixinan Sags[J]. Acta Geologica Sinica, 2018, 92(9): 1 753-1 765.
童亨茂,范彩伟,孟令箭,等 . 中国东—南部裂陷盆地断裂系统复杂性的表现形式及成因机制——以南堡凹陷和涠西南凹陷为例[J]. 地质学报, 2018, 92(9): 1 753-1 765.
14 Cembrano J , González G , Arancibia G , et al . Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile[J]. Tectonophysics, 2005, 400(1): 105-125.
15 Cox S J D , Scholz C H . On the formation and growth of faults: An experimental study[J]. Journal of Structural Geology, 1988, 10(4): 413-430.
16 Naylor M A , Mandl G , Supesteijn C H K . Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7): 737-752.
17 Guerroue L E , Cobbold E R . Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models[J]. Journal of Structural Geology, 2006, 28(3): 421-430.
18 Ghosh N , Chattopadhyay A . The initiation and linkage of surface fractures above a buried strike-slip fault: An experimental approach[J]. Journal of Earth System Science, 2008, 117(1): 23-32.
19 Swanson Mark T . Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine[J]. Journal of Structural Geology, 2006, 28(3): 456-473.
20 Li Yanyou , Qi Jiafu , Zhou Shang . Differential deformation and its main controls on strike-slip structures[J]. Petroleum Geoloty & Experiment, 2017, 39(5): 711-715.
李艳友,漆家福,周赏 . 走滑构造差异变形特征及其主控因素分析——基于砂箱模拟实验[J]. 石油实验地质, 2017, 39(5): 711-715.
21 Qi Jiafu . Two tectonic systerms in the Cenozoic Bohai Bay Basin and their genetic interpretation[J]. Geology in China, 2004, 31(1): 15-22.
漆家福 . 渤海湾新生代盆地的两种构造系统及其成因解释[J]. 中国地质, 2004, 31(1): 15-22.
22 Xu Changgui . Strike-slip transfer zone and its controlon formation of medium and large-sized oilfields in Bohai Sea area[J]. Earth Science, 2016, 41(9): 1 548-1 560.
徐长贵 . 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学, 2016, 41(9): 1 548-1 560.
23 Tong Kaijun , Zhao Chunming , Zuobin Lü , et al . Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay[J]. Petroleum Exploration and Development, 2012, 39(1): 56-63.
童凯军,赵春明,吕坐彬,等 . 渤海变质岩潜山油藏储集层综合评价与裂缝表征[J]. 石油勘探与开发, 2012, 39(1): 56-63.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[3] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[4] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[5] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[6] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[7] 姜高磊, 张克信, 徐亚东. 青藏高原古高程定量恢复研究进展[J]. 地球科学进展, 2015, 30(3): 334-345.
[8] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[9] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[10] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[11] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
[12] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[13] 陈凌,程骋,危自根. 华北克拉通边界带区域深部结构的特征差异性及其构造意义[J]. 地球科学进展, 2010, 25(6): 571-581.
[14] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[15] 赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状[J]. 地球科学进展, 2009, 24(10): 1130-1137.
阅读次数
全文


摘要