Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (3): 334-345    DOI: 10.11867/j.issn.1001-8166.2015.03.0334
综述与评述     
青藏高原古高程定量恢复研究进展
姜高磊1, 2, 张克信1, 2, 3, *, 徐亚东1, 2
1.中国地质大学(武汉)地球科学学院,湖北 武汉 430074; 2.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074; 3.中国地质大学(武汉)地质调查研究院,湖北 武汉 430074
Research Progress of Quantitative Paleoelevation Reconstruction of Tibetan Plateau
Jiang Gaolei1, 2, Zhang Kexin1, 2, 3, Xu Yadong1, 2
1.Faculty of Earth Sciences, China University of Geosciences, Wuhan430074,China; 2. State Key Laboratory of Biological and Environmental Geology, China University of Geosciences, Wuhan430074, China; 3. Geological survey of China University of geoscience, Wuhan430074, China
 全文: PDF(3701 KB)   HTML
摘要:

目前在青藏高原使用的古高程定量恢复的方法有:氧同位素古高程计(包含热动力学模型和经验模型)、△47古温度—古高程计、氢同位素古高程计、古植物古高程计(包含共存分析法、叶相分析法)和古环境分析。详细分析了各古高程计的原理、应用条件、影响因素和优缺点,进一步总结了各种研究方法取得的成果和存在的问题,探讨了各研究方法在青藏高原定量古高程研究方向的应用潜力和发展前景,并对完善现有的古高程计和今后开发新的古高程计提出相关建议。关键词:青藏高原;古高程; 定量研究;新生代

关键词: Tibetan PlateauPaleoelevationCenozoic.Quantitative research    
Abstract:

Quantitative estimation of paleoelevation is crucial to constrain uplift history of the Tibetan Plateau. So far, there are four kinds of paleoaltimeter used to reveal Cenozoic paleoelevation of the Tibetan Plateau, including oxygen-isotope paleoaltimeter, △47 paleotemperaturepaleoaltimeter, Hydrogen-isotope paleoaltimeter, Paleobotanic paleoaltimeter, and Analysis of paleoenvironment. The oxygen-isotope paleoaltimeter, which is based on the relationship between the oxygen isotope value (18O) of surface water and elevation, includes empirical relationship equation and model relationship equation. △47 paleotemperature-paleoaltimeter is a new approach to reconstruct paleoelevation, which has been used in just one position in Tibet. Paleobotanic paleoaltimeter contains co-existence analysis and leaf physiognomic approach, and Analysis of paleoenvironment is a semi-quantitative method. Through detailed comparison of various principles, application condition, influencing factors, and pros-cons of the different paleoaltimeters, we focused on summarizing achievements and problems of these research methods, and further discussed their application potential and prospects. In the future work, we need to pay more attention to obtain new modern data to improve the above paleoaltimeters and introduce new paleoaltimeters.

Key words: Tibetan Plateau    Quantitative research    Cenozoic.    Paleoelevation
出版日期: 2015-03-20
ZTFLH:  P542  
基金资助:

中国地质调查局国家青藏专项项目“青藏高原新近纪区域地质专项调查”(编号: 1212011121261); 大学生自主创新计划“青藏高原沉积盆地及其环境记录”(编号:1410491A04)资助

通讯作者: 通讯作者:张克信(1954-),男,甘肃会宁人,教授,主要从事地层学、沉积学和造山带地质研究.      E-mail: kx_zhang@cug.edu.cn
作者简介: 作者简介:姜高磊(1988-),男,河南扶沟人,硕士研究生,主要从事青藏高原新生代盆地沉积演化研究. E-mail: jianggl198899@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐亚东
张克信
姜高磊

引用本文:

姜高磊, 张克信, 徐亚东. 青藏高原古高程定量恢复研究进展[J]. 地球科学进展, 2015, 30(3): 334-345.

Jiang Gaolei, Zhang Kexin, Xu Yadong. Research Progress of Quantitative Paleoelevation Reconstruction of Tibetan Plateau. Advances in Earth Science, 2015, 30(3): 334-345.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.03.0334        http://www.adearth.ac.cn/CN/Y2015/V30/I3/334

[1] Ding L, Xu Q, Yue Y H, et al . The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Plant Science Letters,2014, 392:250-264.
[2] Xu Ren, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus Semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1): 103-119.[徐仁,陶君荣,孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):103-119.]
[3] Xu Ren. Vegetation changes in the past and the uplift of Qinghai-Xizang Plateau[M]//Proceedings of Symposium of Qinghai-Xizang (Tibet) Plateau. Geology, Geological History and Origin of Qinghai-Xizang Plateau. Beijing: Science Press,1981:8-18.[徐仁. 大陆漂移与喜马拉雅山上升的古植物学证据[M]//中国科学院青藏高原综合考察队编.青藏高原隆升的时代、幅度和形式. 北京:科学出版社,1981:8-18.]
[4] Garzione C N, Quade J, DeCelles P G, et al . Predicting paleoelevation of Tibet and the Himalaya from delta O-18 vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Plant Science Letters, 2000, 183: 215-229.
[5] DeCelles P G, Quade J, Kapp P, et al . High and dry in central Tibet during the Late Oligocene[J]. Earth and Plant Science Letters, 2007, 253:389-401.
[6] Ding Lin, Xu Qiang, Zhang Liyun, et al . Regional variation of river water oxygen isotope and empirical elevation prediction models in Tibetan Plateau[J].Quaternary Sciences, 2009, 29(1):1-12.[丁林,许强,张利云,等.青藏高原河流氧同位素区域变化特征与高度预测模型建立[J].第四纪研究,2009, 29(1):1-12.]
[7] Zhang Kexin, Wang Guocan, Ji Junliang, et al . Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science in China (Series D), 2010, 53(9):1 271-1 294.[张克信,王国灿,季军良,等.青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J].中国科学:D 辑,2010,40(12):1 632-1 654.]
[8] Xu Q, Ding L, Zhang L Y, et al . Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362:31-42.
[9] Saylor J E, Quade J, Dellman D L, et al . The Late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 2009, 309:1-42.
[10] Murphy A M, Saylor J, Ding L. Late Miocene topographic inversion in southwest Tibet on intergratedpaleoelevation reconstructions and structural history[J]. Earth and Plant Science Letters, 2009, 282:1-9.
[11] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature,2006, 439:677-681.
[12] Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogeny[J]. Geology, 2005, 33:181-184.
[13] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. Journal of Geology, 2005, 113:517-533.
[14] Garzione C N, Dettman D L, Quade J, et al . High times on the Tibetan Plateau: Paleoelevation of the Thakkholagraben, Nepal[J]. Geology, 2000, 28:339-342.
[15] Hoke G D, Jing L Z, Hren M T, et al . Stable istopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394:270-278.
[16] Huntingkon K W, Saylor J, Quade J, et al . High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry[J]. Geological Society of America Bulletin, 2014, doi:10.1130/B31000.1.
[17] Zhuang G S, Brandon M T, Pagani M, et al . Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390:186-198.
[18] Gébelin A, Mulch A, Teyssier C, et al . The Miocene elevation of Mount Everest[J]. Geology, 2014, doi:10.1130/G34331.1.
[19] Polissar P J, Freeman K H, Rowley D B, et al . Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Plant Science Letters, 2009, 287:64-76.
[20] Jia G D, Bai Y, Ma Y J, et al . Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126: 14-22.
[21] Sun J M, Xu Q H, Liu W M, et al . Palynological evidence for the latest Oligocene-early Miocene Paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Paleogeography, Palaoeclimatology, Palaeoecology, 2014, 399:21-30.
[22] Zhou Z K, Yang Q S, Xia K.Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas[J].Chinese Science Bulletin, 2007, 52(2): 238-247.
[23] Spicer R A, Harris N B W, Widdowson M, et al . Constant elevation of southern Tibet over the past 15Ma million years[J]. Nature, 2003, 421:622-624.
[24] Wang Y, Xu Y F, Khawaja S, et al . Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleopelevation implications[J]. Earth and Planetary Science Letters, 2013,376:43-53.
[25] Wang Y, Wang X M, Xu Y F, et al . Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications[J]. Earth and Plant Science Letters, 2008, 270:73-85.
[26] Wang Y, Deng T, Biasatti D. Ancient diets indicates ignificant uplift of southern Tibet after ca.7 Ma[J]. Geology, 2006, 34:309-312.
[27] DeCelles P G, Kapp P, Quade J, et al . Oligocene-Miocene Kailas Basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. Geological Society of America Bulletin, 2011, 123:1 337-1 362.
[28] Deng T, Wang S Q, Xie G P, et al . A mannalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269.
[29] Ambach W, Dansgaard W, Eisner H, et al . The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps[J]. Tellus, 1968, 20:595-600.
[30] Siegenthaler U, Oeschger H. Correlation of 18 O in precipitation with temperature and altitude[J]. Nature, 1980, 285:314-317.
[31] Gonfiantini R, Roche M A, Olivry J C, et al . The altitude effect on the isotopic composition of tropical rains[J]. Chemical Geology, 2001, 181:147-67.
[32] Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research, 2012, 117: 1-18.
[33] Rowley D B. Stable isotope-based paleoaltimetry: Theory and validation[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:23-52.
[34] Quade J, Garzione C, Eiler J. Paleoelevation reconstruction using pedogenic carbonates[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:53-87.
[35] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohyp-sometry of the High Himalaya since the Late Miocene[J]. Earth and Plant Science Letters, 2001, 188:253-268.
[36] Quade J, Breecker D O, Daeron M, et al . The paleoaltimetry of Tibet: An isotopic perspective[J].Merica Journal of Science, 2011, 311:77-115.
[37] Zachos J C, Stott L D, Lohmann K C. Evolution of early Cenozoic marine temperatures[J].Paleoocenaography, 1994, 9(2):353-387.
[38] Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumesfrom Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287:269-272.
[39] Poage M A, Chamberlain C P. Empirial relationship between elevation and the stable isotope composition of precipitation: Considerations for studies of paleoelevation change[J]. America Journal of Science, 2001, 301(1): 1-15.
[40] Hren M T,Bookhagen B, Blisniuk P M, et al . δ 18 O and δ D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288:20-32.
[41] Tian L, Masson-Delmotte V, Stievenard M, et al . Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J]. Journal of Geophysical Research, 2001, 106(D22):28 081-28 088.
[42] Zhang X P, Nakawo M, Yao T D, et al . Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions[J]. Science in China (Series D), 2002, 45(6):481-493.
[43] Garzione C N, Dettman D L, Horton B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140.
[44] Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61:3 461-3 475.
[45] Friedman J I, O’Neil J R. Compilation of stable isotopefractionation factors of geochemical interest[M].Fleischer M, ed. Data of Geochemistry. Chapter K K:US Geological Survey Professional Paper, 1977.
[46] DettmanD L,Reische A K, Lohmann K C. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae)[J]. Geochimica et Cosmochimica Acta, 1999, 63:1 049-1 057.
[47] Lu H Y, Wu N Q, Gu Z Y, et al . Distribution of carbon isotope composition of modern soils on the Qinhai-Tibetan Plateau[J]. Biogeochemistry, 2004, 70:275-299.
[48] Bowen G J, Wilkinson B. Spatial distribution of delta O-18 in meteoric precipitation[J]. Geology, 2002, 30:315-318.
[49] Morrill C, Koch P L. Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the EoceneGreen River Basin[J]. Geology, 2002, 30:151-154.
[50] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23:811-831.
[51] Leier A, Quade J, DeCelles P, et al . Stable isotopic results from paleosol carbonate in south Asia: Paleoenvironmental reconstructions and selective alteration[J]. Earth and Planetary Science Letters, 2009, 279: 242-254.
[52] Talbot M R. A review of the paleohydrological interpretation of carbon and oxygen isotopic-ratios in primary lacustrine carbonates[J]. Chemical Geology, 1990, 80:261-279.
[53] Dettman D L, Fang X M, Garzione C N, et al . Uplift-drivenclimatechange at 12 Ma: Along δ 18 O record from the nemargin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 214:267-277.
[54] Wu Zhenhan, Zhao Xun, Ye Peisheng, et al . Paleo-elevation of the Tibetan Plateau inferred from Carbon and Oxygen Isotopes of Lacustrine Deposits[J]. Acta Geologica Sinica,2007, 81(9): 1 277-1 288.[吴珍汉,赵逊,叶培盛,等. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J]. 地质学报,2007, 81(9):1 277-1 288.]
[55] Ghosh P, Adkins J, Affek H, et al . 13 C- 18 O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 439-1 456.
[56] Chosh P, Garzione C N, Eiler J M. Rapid uplift of the Altipiano revealed through 13 C- 18 O bonds in paleosol carbonates[J]. Science, 2006, 311: 511-515.
[57] Quade J, Eiler J, Daëron M, et al . The clumped isotope geothermometer in soil and paleosol carbonate[J]. Geochimica et Cosmochimica Acta, 2013, 105:92-107.
[58] Araguas L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitationand atmospheric moisture[J]. Hydrological Processes, 2000,14:1 341-1 355.
[59] Rozanski K, Sonntag C. Vertical distribution of deuterium in atmospheric watervapour[J]. Tellus, 1982, 34:135-41.
[60] Jia G D, Wei K, Chen F J, et al . Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 165-5 174.
[61] Bai Y, Fang X M, Glexixener G, et al . Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients-Implications for the study of plaeo-elevation[J]. Organic Geochemistry, 2011, 42:838-845.
[62] Schimmelmann A, Sessions A L, Mastalerz M. Hydrogen isotope (D/H)composition of organic matter during diagenesis and thermal maturation[J]. Annual Review of Earth and Planet Science, 2006, 34:501-533.
[63] Zhang Kexin, Wang Guocan, Chen Fenning, et al . Coulping between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(5):583-597.[张克信,王国灿,陈奋宁,等.青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J].地球科学——中国地质大学学报,2007, 32(5):583-597.]
[64] Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74:5 785-5 797.
[65] Hou J Z, D’Andrea W J, Huang Y S. Cansedimentary leaf waxes record D/H ratios of continentalprecipitation? Field, model, and experimental assessments[J]. Geochimica et Cosmochimica Acta, 2008, 72:3 503-3 517.
[66] Saito K, Yasunari T, Takata K. Relative roles of large-scale orography and landsurface processes in the global hydroclimate. Part II: Impacts on hydroclimate over Eurasia[J]. Journal of Hydrometeorol, 2006, 7:642-659.
[67] Liu X, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2002,183:223-245.
[68] Ramstein G, Fluteau F, Besse J, et al . Effect of orogeny, plate motionand land-sea distribution on Eurasion climate change over the past 30 millionyears[J]. Nature, 1997, 386:788-795.
[69] Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf waxn-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 172-1 187.
[70] Mosbrugger V, Utescher T. The coexistence approach: A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[71] Kouwenberg L R, Kurschner W M, McElwain J C. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 2007, 66: 215-241.
[72] McElwain J C.Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO 2 partial pressure[J].Geology,2004, 32:1 017-1 020.
[73] Wang Chengshan, Dai Jin’gen, Liu Zhifei, et al . The uplift history of the Tibetan Plateau and Himalaya and its study approches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3):1-30.[王成善,戴紧根,刘志飞,等.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,2009, 16(3):1-30.]
[74] Mosbrugger V, Utescher T. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[75] Song X Y, Spicer R A, Yang J, et al . Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297: 159-168.
[76] Wolfe J A, Forest C, EMolnar P. Paleobotanical evidence of Eocene and Oligocene paleoaltitudesin midlatitude western North America[J]. Geological Society of America Bulletin, 1988, 110:664-678.
[77] Wang Y, Kromhout E, Zhang C F,et al. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260:359-374.
[78] Turner S, Arnaud N, Liu J, et al . Post-collision shonitic volcanism on the Tibetan Plateau: Implications for convectivethinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1): 45-71.
[79] Turner S, Hawkesworth C, Liu J, et al . Timing of Tibetan uplift const rained by analysis of volcanic rocks[J]. Nature, 1993, 364: 50-54.
[80] Harrison T, Copeland P, Kidd W, et al . Raising Tibet[J]. Science, 1992, 255:1 663-1 670.
[81] Harrison T M, Copeland P, Kidd W S F, et al . Activation of the Nyainquentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14: 658-676.
[82] Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a newminimum age for east-west extension[J]. Nature, 1995, 374:49-52.
[83] Blisnuik P M, Hacker B R, Glodny J, et al . Extension in central Tibet since at least 13.5 Myr[J]. Nature, 2001, 412:628-632.
[84] Brook E J, Brown E T, Kurz M D. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined f rom in situ cosmogenic 10 Be and 26 Al[J]. Geology, 1995, 23(12): 1 063-1 066.
[85] Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmospheric-pressure and palaeoelevation[J]. Nature, 1994, 372(6 505):449-451.
[86] Sahagian D, Proussevitch A, Carlson W. Analysis of vesicular basaltsand lava emplacement processes for application as a paleobarometer/paleoaltimeter[J]. Journal of Geology, 2002, 110(6): 671-685.
[87] Sahagian D, Proussevitch A. Paleoelevation measurement on the basis of vesicular basalts, Paleoaltimetry: Geochemical and Thermodynamic approaches[J]. Reviews in Mineralogy and Geochemistry, 2007,66:195-213.
[88] Dai Jin’gen, Ding Wenjun, Wang Chengshan. Vesicular basalt paleoaltimeter: Principles, methods and its applications[J]. Geological Bulletin of China, 2010, 29(2/3):268-277.[戴紧根,丁文君,王成善.气孔玄武岩古高程计:原理、方法及应用[J].地质通报,2010, 29(2/3):268-277.]
[89] Li Jijun, Fang Xiaomin, Song Chunhui, et al . Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
[90] Xin Huijuan, He Yuanqing, Zhang Tao, et al . The features of climate variation and glacier response in Mt. Yulong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11): 1 257-1 268.[辛慧娟,何元庆,张涛,等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展,2013,28(11):1 257-1 268.]
[91] Ma Yaoming, Hu Zeyong, Tian Lide, et al . Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.[马耀明,胡泽勇,田立德,等.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-215.]

[1] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[2] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[3] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[4] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[5] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[6] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[7] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
[8] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[9] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[10] 陈凌,程骋,危自根. 华北克拉通边界带区域深部结构的特征差异性及其构造意义[J]. 地球科学进展, 2010, 25(6): 571-581.
[11] 赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状[J]. 地球科学进展, 2009, 24(10): 1130-1137.
[12] 刘冠中,王建军,王在华,蒋靖祥,谢周敏,李秦. 独山子台跨断层垂直形变观测资料干扰消除研究[J]. 地球科学进展, 2009, 24(5): 523-531.
[13] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
[14] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[15] 刘洁;刘启元;宋惠珍;童晓光. 造山动力学定量研究——理论与方法[J]. 地球科学进展, 2005, 20(5): 533-540.