地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 334 -345. doi: 10.11867/j.issn.1001-8166.2015.03.0334

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

青藏高原古高程定量恢复研究进展
姜高磊 1, 2( ), 张克信 1, 2, 3, *( ), 徐亚东 1, 2   
  1. 1.中国地质大学(武汉)地球科学学院,湖北 武汉 430074
    2.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074
    3.中国地质大学(武汉)地质调查研究院,湖北 武汉 430074
  • 出版日期:2015-04-08
  • 通讯作者: 张克信 E-mail:jianggl198899@163.com;kx_zhang@cug.edu.cn
  • 基金资助:
    中国地质调查局国家青藏专项项目“青藏高原新近纪区域地质专项调查”(编号: 1212011121261);大学生自主创新计划“青藏高原沉积盆地及其环境记录”(编号:1410491A04)资助

Research Progress of Quantitative Paleoelevation Reconstruction of Tibetan Plateau

Gaolei Jiang 1, 2( ), Kexin Zhang 1, 2, 3( ), Yadong Xu 1, 2   

  1. 1.Faculty of Earth Sciences, China University of Geosciences, Wuhan430074,China
    2. State Key Laboratory of Biological and Environmental Geology, China University of Geosciences, Wuhan430074, China
    3. Geological survey of China University of geoscience, Wuhan430074, China
  • Online:2015-04-08 Published:2015-03-20

目前在青藏高原使用的古高程定量恢复的方法有:氧同位素古高程计(包含热动力学模型和经验模型)、△47古温度—古高程计、氢同位素古高程计、古植物古高程计(包含共存分析法、叶相分析法)和古环境分析。详细分析了各古高程计的原理、应用条件、影响因素和优缺点,进一步总结了各种研究方法取得的成果和存在的问题,探讨了各研究方法在青藏高原定量古高程研究方向的应用潜力和发展前景,并对完善现有的古高程计和今后开发新的古高程计提出相关建议。关键词:青藏高原;古高程; 定量研究;新生代

Quantitative estimation of paleoelevation is crucial to constrain uplift history of the Tibetan Plateau. So far, there are four kinds of paleoaltimeter used to reveal Cenozoic paleoelevation of the Tibetan Plateau, including oxygen-isotope paleoaltimeter, △47 paleotemperaturepaleoaltimeter, Hydrogen-isotope paleoaltimeter, Paleobotanic paleoaltimeter, and Analysis of paleoenvironment. The oxygen-isotope paleoaltimeter, which is based on the relationship between the oxygen isotope value (18O) of surface water and elevation, includes empirical relationship equation and model relationship equation. △47 paleotemperature-paleoaltimeter is a new approach to reconstruct paleoelevation, which has been used in just one position in Tibet. Paleobotanic paleoaltimeter contains co-existence analysis and leaf physiognomic approach, and Analysis of paleoenvironment is a semi-quantitative method. Through detailed comparison of various principles, application condition, influencing factors, and pros-cons of the different paleoaltimeters, we focused on summarizing achievements and problems of these research methods, and further discussed their application potential and prospects. In the future work, we need to pay more attention to obtain new modern data to improve the above paleoaltimeters and introduce new paleoaltimeters.

中图分类号: 

图1 青藏高原定量古高程恢复分布(现代海拔边界据文献 [ 5 ]修改,分水岭据文献 [ 6 ];投点数据见 表1 ;地层分区据文献 [ 7 ]修改])
Fig.1 Distribution of paleoelevation dates in Qinghai-Tibet Plateau (modern altitude boundary modified after reference [ 3 ]; watershed mountains after reference [ 4 ]; paleoelevation date refer to Table 1 ; stratigraphy division after reference [ 7 ])
表1 青藏高原定量古高程恢复统计表
Table 1 Paleoelevation dates of Qinghai-Tibet Plateau
代号 地 点 时 代 研究方法 材料 高程结果 参考
文献
LZ 林周盆地 60~48 Ma 热动力学模型 古土壤、湖相碳酸盐、泥灰岩 (4 500±400) m [ 1 ]
H 黑狐岭 51~28 Ma 热动力学模型
经验公式
土壤、湖相碳酸盐、泥灰岩 >5 000 m [ 8 ]
Z1 扎达盆地 9.2 Ma 热动力学模型 腹足类壳体化石 >6000 m [ 9 ]
Z2 扎达盆地 中新世 热动力学模型 腹足类壳体化石 >现在高程1 000~1 500 m [ 10 ]
LP1 伦坡拉盆地 35 Ma 热动力学模型 土壤、湖相碳酸盐 4260+475/-575 m [ 11 ]
Oi1 南木林盆地 15 Ma 热动力学模型 土壤碳酸盐 5200+1370/-605 m [ 12 ]
F 风火山盆地 中新世 热动力学模型 湖相碳酸盐 2040+1460/-1130 m [ 13 ]
T 塔口拉地堑 晚中新世 经验公式 湖相、土壤碳酸盐 5450±897 m [ 14 ]
LM 黎明镇 晚始新世 经验公式 古土壤碳酸盐 3300±450 m [ 15 ]
Z3 扎达盆地 9~4 Ma △47古温度-古高程计 湖相、土壤碳酸盐 5400±500 m [ 16 ]
Q 柴达木盆地北缘 15 Ma以来 氢同位素 植物脂类化石 10.4 Ma达到现在高程 [ 17 ]
E 珠穆朗玛峰 早中新世晚期 氢同位素 变质岩中含水矿物 (5 100±400) m
(5 400±350) m
[ 18 ]
Hh 可可西里盆地 始新世—中新世 氢同位素 植物脂类化石 隆升1 700~2 600 m [ 19 ]
LP2 伦坡拉盆地 始新世
中新世
氢同位素 植物脂类化石 3 600~4 100 m(始新世)
4 500~4 900 m(中新世)
[ 19 ]
LP3 伦坡拉盆地 25.5~19.8 Ma 碳、氢同位素 植物脂类化石 (2 770±530 )m
(3 040±560) m
[ 20 ]
LP4 伦坡拉盆地 25.5~19.8 Ma 共存分析 孢粉化石 (3 190±100) m [ 21 ]
X 希夏邦马峰 上新世 共存分析 孢粉化石 2 500~3 500 m [ 2 , 22 ]
Oi2 南木林盆地 中新世 共存分析 孢粉化石 2 500~3 000 m [ 22 ]
Oi3 南木林盆地 15 Ma 叶相分析 叶片化石 4689±895 m [ 23 ]
Z4 扎达盆地 4.2~3.1 Ma 古环境分析 食草动物牙齿化石 >2 500 m [ 24 ]
KL 昆仑山 3~2 Ma 古环境分析 食草动物牙齿化石 隆升(2 700±1 600) m [ 25 ]
Gy 吉隆盆地 7 Ma 古环境分析 食草动物牙齿化石 <2900~3400 m [ 26 ]
K 凯拉斯盆地 26 Ma 古环境分析 湖相、土壤碳酸盐 >4 500 m [ 27 ]
N 尼玛盆地 26~24 Ma 古环境分析 湖相、土壤碳酸盐 4 500~5 000 m [ 5 ]
LP5 伦坡拉盆地 18~16 Ma 古环境恢复 哺乳动物化石 约3 000 m [ 28 ]
图2 Kali Gandaki流域河流水δ 18O与高程的关系图(据参考文献 [ 4 ]修改)
Fig.2. δ 18O vs. altitude for Kali Gandaki tributaries (modified from reference [ 4 ])
图3 塔口拉地堑中碳酸盐岩中双壳类化石的生长纹层 [ 43 ]
Fig.3 Annual growth bands of fossil bivalves in carbonate from Thakholagraben [ 43 ]
图4 氢同位素古高程计关系式 (a)贡嘎山植被脂类化石中δDwax值与土壤水中δDp值线性关系; (b)植被脂类化石中δDwax值与海拔二次拟合关系[ 60 ]
Fig.4 Equations of hydrogen-based istopepaleoelevation (a)Correlations of n-alkane δDwax with predicted δDp; (b) Correlations of n-alkane δDwax with altitude [ 60 ]
图5 植被脂类中氢同位素影响因素示意图 [ 69 ]
Fig.5 Schematic showing the model predictions for the effects on plant-wax n-alkane δD values [ 69 ]
图6 青藏高原定量古高程恢复结果对比(现代海拔 [ 17 ];切线位置见 图1 ;古高程数据来源见 表1
Fig.6 Comparison of paleoelevation date in Qinghai-Tibet Plateau. (modern altitude [ 17 ]; the location of topographic cross-section refer to Fig.1 ; paleoelevation refer to Table 1 )
[1] Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Plant Science Letters,2014, 392:250-264.
[2] Xu Ren, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus Semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1): 103-119.
[徐仁,陶君荣,孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):103-119.]
[3] Xu Ren. Vegetation changes in the past and the uplift of Qinghai-Xizang Plateau[M]//Proceedings of Symposium of Qinghai-Xizang (Tibet) Plateau. Geology, Geological History and Origin of Qinghai-Xizang Plateau. Beijing: Science Press,1981:8-18.
[徐仁. 大陆漂移与喜马拉雅山上升的古植物学证据[M]//中国科学院青藏高原综合考察队编.青藏高原隆升的时代、幅度和形式. 北京:科学出版社,1981:8-18.]
[4] Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from delta O-18 vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Plant Science Letters, 2000, 183: 215-229.
[5] DeCelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Plant Science Letters, 2007, 253:389-401.
[6] Ding Lin, Xu Qiang, Zhang Liyun, et al. Regional variation of river water oxygen isotope and empirical elevation prediction models in Tibetan Plateau[J].Quaternary Sciences, 2009, 29(1):1-12.
[丁林,许强,张利云,等.青藏高原河流氧同位素区域变化特征与高度预测模型建立[J].第四纪研究,2009, 29(1):1-12.]
[7] Zhang Kexin, Wang Guocan, Ji Junliang, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science in China (Series D), 2010, 53(9):1 271-1 294.
[张克信,王国灿,季军良,等.青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J].中国科学:D 辑,2010,40(12):1 632-1 654.]
[8] Xu Q, Ding L, Zhang L Y, et al. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362:31-42.
[9] Saylor J E, Quade J, Dellman D L, et al. The Late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 2009, 309:1-42.
[10] Murphy A M, Saylor J, Ding L. Late Miocene topographic inversion in southwest Tibet on intergratedpaleoelevation reconstructions and structural history[J]. Earth and Plant Science Letters, 2009, 282:1-9.
[11] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature,2006, 439:677-681.
[12] Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogeny[J]. Geology, 2005, 33:181-184.
[13] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. Journal of Geology, 2005, 113:517-533.
[14] Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkholagraben, Nepal[J]. Geology, 2000, 28:339-342.
[15] Hoke G D, Jing L Z, Hren M T, et al. Stable istopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394:270-278.
[16] Huntingkon K W, Saylor J, Quade J, et al. High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry[J]. Geological Society of America Bulletin, 2014, doi:10.1130/B31000.1.
[17] Zhuang G S, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390:186-198.
[18] Gébelin A, Mulch A, Teyssier C, et al. The Miocene elevation of Mount Everest[J]. Geology, 2014, doi:10.1130/G34331.1.
[19] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Plant Science Letters, 2009, 287:64-76.
[20] Jia G D, Bai Y, Ma Y J, et al. Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126: 14-22.
[21] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the latest Oligocene-early Miocene Paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Paleogeography, Palaoeclimatology, Palaeoecology, 2014, 399:21-30.
[22] Zhou Z K, Yang Q S, Xia K. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas[J].Chinese Science Bulletin, 2007, 52(2): 238-247.
[23] Spicer R A, Harris N B W, Widdowson M,et al. Constant elevation of southern Tibet over the past 15Ma million years[J]. Nature, 2003, 421:622-624.
[24] Wang Y, Xu Y F, Khawaja S, et al. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleopelevation implications[J]. Earth and Planetary Science Letters, 2013,376:43-53.
[25] Wang Y, Wang X M, Xu Y F, et al. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications[J]. Earth and Plant Science Letters, 2008, 270:73-85.
[26] Wang Y, Deng T, Biasatti D. Ancient diets indicates ignificant uplift of southern Tibet after ca.7 Ma[J]. Geology, 2006, 34:309-312.
[27] DeCelles P G, Kapp P, Quade J, et al. Oligocene-Miocene Kailas Basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. Geological Society of America Bulletin, 2011, 123:1 337-1 362.
[28] Deng T, Wang S Q, Xie G P, et al. A mannalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269.
[29] Ambach W, Dansgaard W, Eisner H, et al. The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps[J]. Tellus, 1968, 20:595-600.
[30] Siegenthaler U, Oeschger H. Correlation of 18O in precipitation with temperature and altitude[J]. Nature, 1980, 285:314-317.
[31] Gonfiantini R, Roche M A, Olivry J C, et al. The altitude effect on the isotopic composition of tropical rains[J]. Chemical Geology, 2001, 181:147-67.
[32] Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research, 2012, 117: 1-18.
[33] Rowley D B. Stable isotope-based paleoaltimetry: Theory and validation[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:23-52.
[34] Quade J, Garzione C, Eiler J. Paleoelevation reconstruction using pedogenic carbonates[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:53-87.
[35] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohyp-sometry of the High Himalaya since the Late Miocene[J]. Earth and Plant Science Letters, 2001, 188:253-268.
[36] Quade J, Breecker D O, Daeron M, et al. The paleoaltimetry of Tibet: An isotopic perspective[J].Merica Journal of Science, 2011, 311:77-115.
[37] Zachos J C, Stott L D, Lohmann K C. Evolution of early Cenozoic marine temperatures[J].Paleoocenaography, 1994, 9(2):353-387.
[38] Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumesfrom Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287:269-272.
[39] Poage M A, Chamberlain C P. Empirial relationship between elevation and the stable isotope composition of precipitation: Considerations for studies of paleoelevation change[J]. America Journal of Science, 2001, 301(1): 1-15.
[40] Hren M T,Bookhagen B, Blisniuk P M, et al. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288:20-32.
[41] Tian L, Masson-Delmotte V, Stievenard M, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J]. Journal of Geophysical Research, 2001, 106(D22):28 081-28 088.
[42] Zhang X P, Nakawo M, Yao T D, et al. Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions[J]. Science in China (Series D), 2002, 45(6):481-493.
[43] Garzione C N, Dettman D L, Horton B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140.
[44] Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61:3 461-3 475.
[45] Friedman J I, O’Neil J R. Compilation of stable isotopefractionation factors of geochemical interest[M].Fleischer M, ed. Data of Geochemistry. Chapter K K:US Geological Survey Professional Paper, 1977.
[46] DettmanD L,Reische A K, Lohmann K C. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae)[J]. Geochimica et Cosmochimica Acta, 1999, 63:1 049-1 057.
[47] Lu H Y, Wu N Q, Gu Z Y, et al. Distribution of carbon isotope composition of modern soils on the Qinhai-Tibetan Plateau[J]. Biogeochemistry, 2004, 70:275-299.
[48] Bowen G J, Wilkinson B. Spatial distribution of delta O-18 in meteoric precipitation[J]. Geology, 2002, 30:315-318.
[49] Morrill C, Koch P L. Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the EoceneGreen River Basin[J]. Geology, 2002, 30:151-154.
[50] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23:811-831.
[51] Leier A, Quade J, DeCelles P,et al. Stable isotopic results from paleosol carbonate in south Asia: Paleoenvironmental reconstructions and selective alteration[J]. Earth and Planetary Science Letters, 2009, 279: 242-254.
[52] Talbot M R. A review of the paleohydrological interpretation of carbon and oxygen isotopic-ratios in primary lacustrine carbonates[J]. Chemical Geology, 1990, 80:261-279.
[53] Dettman D L, Fang X M, Garzione C N, et al. Uplift-drivenclimatechange at 12 Ma: Along δ18O record from the nemargin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 214:267-277.
[54] Wu Zhenhan, Zhao Xun, Ye Peisheng, et al. Paleo-elevation of the Tibetan Plateau inferred from Carbon and Oxygen Isotopes of Lacustrine Deposits[J]. Acta Geologica Sinica,2007, 81(9): 1 277-1 288.
[吴珍汉,赵逊,叶培盛,等. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J]. 地质学报,2007, 81(9):1 277-1 288.]
[55] Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 439-1 456.
[56] Chosh P, Garzione C N, Eiler J M. Rapid uplift of the Altipiano revealed through 13C-18O bonds in paleosol carbonates[J]. Science, 2006, 311: 511-515.
[57] Quade J, Eiler J, Daëron M, et al. The clumped isotope geothermometer in soil and paleosol carbonate[J]. Geochimica et Cosmochimica Acta, 2013, 105:92-107.
[58] Araguas L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitationand atmospheric moisture[J]. Hydrological Processes, 2000,14:1 341-1 355.
[59] Rozanski K, Sonntag C. Vertical distribution of deuterium in atmospheric watervapour[J]. Tellus, 1982, 34:135-41.
[60] Jia G D, Wei K, Chen F J, et al. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 165-5 174.
[61] Bai Y, Fang X M, Glexixener G, et al. Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients-Implications for the study of plaeo-elevation[J]. Organic Geochemistry, 2011, 42:838-845.
[62] Schimmelmann A, Sessions A L, Mastalerz M. Hydrogen isotope (D/H)composition of organic matter during diagenesis and thermal maturation[J]. Annual Review of Earth and Planet Science, 2006, 34:501-533.
[63] Zhang Kexin, Wang Guocan, Chen Fenning, et al. Coulping between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(5):583-597.
[张克信,王国灿,陈奋宁,等.青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J].地球科学——中国地质大学学报,2007, 32(5):583-597.]
[64] Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74:5 785-5 797.
[65] Hou J Z, D’Andrea W J, Huang Y S. Cansedimentary leaf waxes record D/H ratios of continentalprecipitation? Field, model, and experimental assessments[J]. Geochimica et Cosmochimica Acta, 2008, 72:3 503-3 517.
[66] Saito K, Yasunari T, Takata K. Relative roles of large-scale orography and landsurface processes in the global hydroclimate. Part II: Impacts on hydroclimate over Eurasia[J]. Journal of Hydrometeorol, 2006, 7:642-659.
[67] Liu X, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2002,183:223-245.
[68] Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motionand land-sea distribution on Eurasion climate change over the past 30 millionyears[J]. Nature, 1997, 386:788-795.
[69] Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf waxn-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 172-1 187.
[70] Mosbrugger V, Utescher T. The coexistence approach: A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[71] Kouwenberg L R, Kurschner W M, McElwain J C. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 2007, 66: 215-241.
[72] McElwain J C.Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure[J].Geology,2004, 32:1 017-1 020.
[73] Wang Chengshan, Dai Jin’gen, Liu Zhifei, et al. The uplift history of the Tibetan Plateau and Himalaya and its study approches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3):1-30.
[王成善,戴紧根,刘志飞,等.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,2009, 16(3):1-30.]
[74] Mosbrugger V, Utescher T. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[75] Song X Y, Spicer R A, Yang J, et al. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297: 159-168.
[76] Wolfe J A, Forest C, EMolnar P. Paleobotanical evidence of Eocene and Oligocene paleoaltitudesin midlatitude western North America[J]. Geological Society of America Bulletin, 1988, 110:664-678.
[77] Wang Y, Kromhout E, Zhang C F,et al. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260:359-374.
[78] Turner S, Arnaud N, Liu J, et al. Post-collision shonitic volcanism on the Tibetan Plateau: Implications for convectivethinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1): 45-71.
[79] Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift const rained by analysis of volcanic rocks[J]. Nature, 1993, 364: 50-54.
[80] Harrison T, Copeland P, Kidd W, et al. Raising Tibet[J]. Science, 1992, 255:1 663-1 670.
[81] Harrison T M, Copeland P, Kidd W S F,et al. Activation of the Nyainquentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14: 658-676.
[82] Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a newminimum age for east-west extension[J]. Nature, 1995, 374:49-52.
[83] Blisnuik P M, Hacker B R, Glodny J, et al. Extension in central Tibet since at least 13.5 Myr[J]. Nature, 2001, 412:628-632.
[84] Brook E J, Brown E T, Kurz M D. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined f rom in situ cosmogenic 10Be and 26Al[J]. Geology, 1995, 23(12): 1 063-1 066.
[85] Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmospheric-pressure and palaeoelevation[J]. Nature, 1994, 372(6 505):449-451.
[86] Sahagian D, Proussevitch A, Carlson W. Analysis of vesicular basaltsand lava emplacement processes for application as a paleobarometer/paleoaltimeter[J]. Journal of Geology, 2002, 110(6): 671-685.
[87] Sahagian D, Proussevitch A. Paleoelevation measurement on the basis of vesicular basalts, Paleoaltimetry: Geochemical and Thermodynamic approaches[J]. Reviews in Mineralogy and Geochemistry, 2007,66:195-213.
[88] Dai Jin’gen, Ding Wenjun, Wang Chengshan. Vesicular basalt paleoaltimeter: Principles, methods and its applications[J]. Geological Bulletin of China, 2010, 29(2/3):268-277.
[戴紧根,丁文君,王成善.气孔玄武岩古高程计:原理、方法及应用[J].地质通报,2010, 29(2/3):268-277.]
[89] Li Jijun, Fang Xiaomin, Song Chunhui, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
[90] Xin Huijuan, He Yuanqing, Zhang Tao, et al. The features of climate variation and glacier response in Mt. Yulong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11): 1 257-1 268.
[辛慧娟,何元庆,张涛,等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展,2013,28(11):1 257-1 268.]
[91] Ma Yaoming, Hu Zeyong, Tian Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.
[马耀明,胡泽勇,田立德,等.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-215.]
[1] 李超, 陈国辉, 何智远, 王平, 薛飞, 施一凡. 中国西部新生代陆内前陆盆地迁移过程及其构造指示意义[J]. 地球科学进展, 2023, 38(7): 729-744.
[2] 魏全超, 刘恣君, AHMEN Khalid, 郭虹兵, 徐宏远, 王恒, 邓宾. 岩石圈动力学过程砂箱物理模拟研究进展[J]. 地球科学进展, 2023, 38(6): 644-660.
[3] 王勇生, 马威威, 杨隽豪, 白桥. 大别造山带晚古生代再循环锆石:合肥盆地新生代基性岩锆石 LA-ICP-MS U-Pb定年和 Hf同位素证据[J]. 地球科学进展, 2023, 38(1): 70-85.
[4] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[5] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[6] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[7] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[8] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[9] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[10] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(9): 922-939.
[11] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[12] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[13] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[14] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[15] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
阅读次数
全文


摘要