地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 70 -85. doi: 10.11867/j.issn.1001-8166.2022.097

研究论文 上一篇    下一篇

大别造山带晚古生代再循环锆石:合肥盆地新生代基性岩锆石 LA-ICP-MS U-Pb定年和 Hf同位素证据
王勇生( ), 马威威, 杨隽豪, 白桥   
  1. 合肥工业大学资源与环境工程学院,安徽 合肥 230009
  • 收稿日期:2022-06-08 修回日期:2022-10-12 出版日期:2023-01-10
  • 基金资助:
    国家自然科学基金面上项目“大别造山带北淮阳单元的变形历史与构造属性”(41572186)

Late Paleozoic Recycled Zircons in the Dabie Orogen: Evidence from Zircon LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of the Cenozoic Mafic Igneous Rocks in the Hefei Basin

Yongsheng WANG( ), Weiwei MA, Juanhao YANG, Qiao BAI   

  1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2022-06-08 Revised:2022-10-12 Online:2023-01-10 Published:2023-02-02
  • About author:WANG Yongsheng (1977-), male, Shijiazhuang City, Hebei Province, Professor. Research areas include orogenic dynamics and fault structures. E-mail: yshw9007@hfut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Deformation history and tectonic attribute of the Beihuaiyang unit in the Dabie orogenic belt”(41572186)

大陆俯冲带通常是由大洋俯冲带发展而形成的,因而大陆造山带内通常会同时记录大洋俯冲和大陆俯冲阶段的信息。位于中国中东部的大别造山带记录了丰富的三叠纪华南、华北板块陆—陆碰撞信息,但几乎完全缺失晚古生代大洋俯冲阶段证据。基于古生代地质事件相关岩石可能被掩盖于合肥盆地底部或在大陆俯冲过程中被运移至地幔深部的推测,针对合肥盆地中部出露的玄武岩和辉绿岩开展了详细的锆石LA-ICP-MS U-Pb定年和Lu-Hf同位素分析。测试结果显示,大蜀山辉绿岩和小蜀山玄武岩均获得了较多的晚古生代年龄结果,加权平均年龄分别为338 Ma、270 Ma和349 Ma、273 Ma,鸡鸣山辉绿岩则主要表现为早白垩世年龄。这些基性岩浆岩中锆石年龄结果表现为连续分布的特征,2个最小的年龄结果指示了新生代基性岩浆活动的发生时间,其他锆石则来自于古老岩石的再循环。对高温条件下的锆石保存机制以及锆石来源的综合分析,可以得出合肥盆地基性岩中的晚古生代锆石来源于古特提斯洋俯冲形成的岩浆岩。三叠纪大陆俯冲阶段部分晚古生代岩浆岩被俯冲板片运移至地幔深部,而后在新生代太平洋板块俯冲过程中与深部地幔一起部分熔融而形成合肥盆地新生代基性岩浆岩。这为大别造山带晚古生代曾发生过大洋俯冲事件提供了直接证据。

Continental subduction belts are usually formed following the development of oceanic subduction; therefore, information on oceanic and continental subduction should be recorded in continental orogens. The Dabie Orogen records the Triassic continent-continent collision between the South China Block and North China Block, but shows little evidence of oceanic subduction. Based on the speculation that rocks related to oceanic subduction may have been covered at the bottom of the Hefei Basin or migrated to the deep mantle during continental subduction, this study conducted detailed zircon LA-ICP-MS U-Pb dating and Lu-Hf isotope analyses for basalt and diabase samples from the central Hefei Basin. The results show that both the diabase from Dashushan and the basalt from Xiaoshushan have late Paleozoic zircon ages, with weighted average ages of 338 Ma and 270 Ma and 349 Ma and 273 Ma, respectively, while the diabase from Jimingshan mainly has Early Cretaceous zircon age. The zircon ages in these mafic igneous rocks are characterized by a continuous distribution from the Paleoproterozoic to the Cretaceous. The two smallest ages indicate the time of Cenozoic mafic magmatism, and the other zircons originate from the recycling of ancient rocks. Based on the comprehensive analysis of zircon preservation under high-temperature conditions and their source, it can be concluded that the Late Paleozoic zircon in the Cenozoic mafic igneous rocks of the Hefei Basin originated from magmatic rocks formed by the subduction of the Paleo-Tethys Ocean. During the Triassic continent-continent subduction, the Paleozoic magmatic rocks were partly transported to the mantle depth and then partially melted with the mantle during the subduction of the Cenozoic Pacific plate to form Cenozoic mafic igneous rocks. This provides direct evidence of the occurrence of late Paleozoic oceanic subduction in the Dabie Orogen.

中图分类号: 

图1 大别造山带及合肥盆地构造位置简图及采样位置
(a)秦岭—桐柏—红安—大别—苏鲁造山带索引图(据参考文献[ 5 ]修改);(b)大别造山带及合肥盆地构造框架(据参考文献[ 26 ]修改);(c)合肥盆地中部新生代基性岩浆岩及沉积岩分布简图
Fig. 1 Tectonic location and sampling location of the Dabie Orogen and the Hefei Basin
(a) Index map of the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt (modified after reference [ 5 ]);(b) Tectonic framework of the Dabie Orogen and the Hefei Basin (modified after reference [ 26 ]);(c) Simplified distribution map of Cenozoic mafic igneous rocks and sedimentary rocks in the central Hefei Basin
图2 合肥盆地基性岩野外照片和显微照片
(a)大蜀山辉绿岩野外照片;(b)大蜀山辉绿岩显微照片;(c)小蜀山玄武岩手标本照片;(d)小蜀山玄武岩显微照片;
Fig. 2 Field photographs and micrographs of mafic igneous rocks in the Hefei Basin
(a) Field photographs of the Dashushan diabase;(b) Micrograph of Dashushan diabase;(c) Hand specimens of the Xiaoshushan basalt;(d) Micrograph of Xiaoshushan basalt
图3 合肥盆地基性岩浆岩部分锆石阴极发光图像
实线圈表示锆石U-Pb分析位置,虚线圈表示锆石Lu-Hf同位素分析位置
Fig. 3 Cathodoluminescence images of a selection of the dated zircons from the mafic magmatic rocks in the Hefei Basin
The solid circle is the location of zircon U-Pb analysis,and the dotted circle is the location of zircon Lu-Hf isotope analysis
图4 合肥盆地基性岩年龄谐和图、频谱图和关键时间段加权平均年龄
Fig. 4 Concordia diagramshistograms and weighted mean U-Pb ages for zircons of mafic rocks in the Hefei Basin
表1 合肥盆地新生代基性岩锆石原位 Lu-Hf同位素分析结果
Table 1 Zircon in-situ Lu-Hf isotopic analysis results of the Cenozoic mafic rocks in the Hefei Basin
测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHft TDM1/Ma TDM2/Ma fLu/Hf
大蜀山辉绿岩 SS1-01 129 0.01 0.000 378 0.282 081 0.000 014 -24.40 -21.60 0.25 1 621 19 2 554 31 -0.99
SS1-02 130 0.02 0.000 452 0.282 072 0.000 014 -24.00 -21.90 0.25 1 637 19 2 574 31 -0.99
SS1-03 125 0.02 0.000 712 0.282 087 0.000 013 -24.20 -21.60 0.22 1 628 17 2 546 28 -0.98
SS1-04 103 0.02 0.000 470 0.282 088 0.000 015 -24.20 -22.00 0.26 1 617 20 2 557 33 -0.99
SS1-05 315 0.09 0.002 929 0.282 931 0.000 013 5.63 12.00 0.24 479 20 564 30 -0.91
SS1-06 120 0.02 0.000 527 0.282 074 0.000 016 -24.70 -22.10 0.28 1 638 22 2 577 35 -0.98
SS1-07 125 0.01 0.000 434 0.282 060 0.000 018 -25.20 -22.50 0.31 1 653 24 2 604 39 -0.99
SS1-08 261 0.10 0.003 438 0.282 939 0.000 015 5.89 11.00 0.26 475 22 581 33 -0.90
SS1-09 130 0.02 0.000 671 0.282 115 0.000 021 -23.20 -20.40 0.37 1 587 29 2 480 47 -0.98
SS1-10 272 0.08 0.002 344 0.282 918 0.000 011 5.16 10.70 0.19 491 16 610 24 -0.93
SS1-11 122 0.02 0.000 618 0.282 105 0.000 016 -23.60 -21.00 0.27 1 600 21 2 508 34 -0.98
SS1-12 129 0.02 0.000 768 0.282 104 0.000 016 -23.60 -20.90 0.29 1 607 23 2 507 37 -0.98
SS1-13 128 0.03 0.000 929 0.282 087 0.000 022 -24.20 -21.50 0.40 1 637 31 2 544 50 -0.97
SS1-14 348 0.00 0.000 031 0.282 422 0.000 016 -12.40 -4.73 0.29 1 144 22 1 652 37 -1.00
SS1-15 345 0.04 0.001 357 0.282 787 0.000 017 0.53 7.81 0.29 665 24 852 37 -0.96
SS1-16 129 0.02 0.000 814 0.282 113 0.000 017 -23.30 -20.50 0.29 1 596 23 2 485 37 -0.98
SS1-17 357 0.04 0.001 518 0.282 788 0.000 024 0.56 8.06 0.42 667 34 845 53 -0.95
小蜀山玄武岩 XS1-01 266 0.02 0.000 557 0.281 929 0.000 015 -29.80 -24.10 0.26 1 838 20 2 809 32 -0.98
XS1-02 339 0.02 0.000 871 0.282 457 0.000 013 -11.20 -3.90 0.23 1 120 18 1 592 30 -0.97
XS1-03 285 0.01 0.000 268 0.282 251 0.000 015 -18.40 -12.20 0.26 1 385 20 2 077 32 -0.99
XS1-04 271 0.02 0.000 942 0.282 697 0.000 016 -2.66 3.13 0.28 785 22 1 094 35 -0.97
XS1-05 327 0.01 0.000 427 0.282 014 0.000 016 -26.80 -19.70 0.28 1 716 22 2 580 35 -0.99
XS1-06 370 0.04 0.001 324 0.282 628 0.000 014 -5.09 2.72 0.25 891 20 1 196 31 -0.96
XS1-07 129 0.04 0.001 325 0.282 003 0.000 017 -27.20 -24.50 0.30 1 772 24 2 732 38 -0.96
XS1-08 122 0.01 0.000 441 0.282 095 0.000 017 -24.00 -21.30 0.30 1 606 23 2 529 37 -0.99
XS1-09 125 0.03 0.001 245 0.281 888 0.000 016 -31.30 -28.60 0.29 1 929 23 2 989 36 -0.96
XS1-10 272 0.03 0.001 136 0.282 145 0.000 014 -22.20 -16.40 0.26 1 566 20 2 332 32 -0.97
XS1-11 126 0.01 0.000 455 0.282 094 0.000 019 -24.00 -21.30 0.33 1 608 26 2 529 42 -0.99
XS1-12 123 0.03 0.001 116 0.282 225 0.000 017 -19.30 -16.70 0.30 1 452 23 2 241 37 -0.97
XS1-13 125 0.02 0.000 815 0.282 185 0.000 014 -20.80 -18.10 0.24 1 496 19 2 328 30 -0.98
XS1-14 127 0.07 0.002 342 0.282 155 0.000 016 -21.80 -19.30 0.29 1 603 24 2 401 36 -0.93
XS1-15 129 0.02 0.000 887 0.281 945 0.000 014 -29.30 -26.50 0.26 1 832 20 2 859 32 -0.97
XS1-16 123 0.04 0.001 226 0.282 450 0.000 017 -11.40 -8.78 0.30 1 140 24 1 738 38 -0.96
XS1-17 362 0.03 0.001 084 0.282 573 0.000 014 -7.02 0.68 0.24 962 19 1 319 31 -0.97
XS1-18 128 0.01 0.000464 0.281 950 0.000 012 -29.10 -26.30 0.21 1 804 16 2 846 27 -0.99
XS1-19 353 0.03 0.000999 0.282 532 0.000 013 -8.49 -0.96 0.22 1 019 18 1 417 28 -0.97
XS1-20 346 0.06 0.002125 0.281 912 0.000 018 -30.40 -23.30 0.32 1 940 25 2 817 39 -0.94
鸡鸣山辉绿岩 JM1-01 122 0.02 0.000684 0.282 013 0.000 016 -26.90 -24.20 0.28 1 729 21 2 712 35 -0.98
JM1-02 99 0.04 0.001253 0.282 564 0.000 017 -7.34 -5.25 0.30 980 24 1 497 38 -0.96
JM1-03 98 0.05 0.001600 0.282 553 0.000 017 -7.74 -5.70 0.30 1 005 24 1 524 38 -0.95
JM1-04 92 0.05 0.001696 0.282 598 0.000 020 -6.17 -4.25 0.36 944 29 1 428 46 -0.95
JM1-05 97 0.05 0.001724 0.282 538 0.000 018 -8.27 -6.26 0.32 1 030 26 1 559 40 -0.95
JM1-06 123 0.02 0.000841 0.282 016 0.000 013 -26.70 -24.10 0.23 1 731 18 2 704 29 -0.97
JM1-07 100 0.04 0.001282 0.282 561 0.000 016 -7.45 -5.34 0.28 985 23 1 503 36 -0.96
JM1-08 101 0.05 0.001680 0.282 569 0.000 016 -7.19 -5.08 0.28 985 23 1 487 36 -0.95
JM1-09 119 0.03 0.001092 0.282 225 0.000 016 -19.40 -16.80 0.29 1 452 23 2 245 36 -0.97
JM1-10 95 0.04 0.001357 0.282 585 0.000 015 -6.61 -4.61 0.27 953 22 1 453 35 -0.96
JM1-11 122 0.02 0.000641 0.282 002 0.000 013 -27.20 -24.60 0.24 1 742 18 2 736 30 -0.98
JM1-12 124 0.02 0.000913 0.282 009 0.000 015 -27.00 -24.30 0.26 1 744 21 2 720 33 -0.97
JM1-13 115 0.03 0.001382 0.281 973 0.000 013 -28.30 -25.90 0.24 1 817 19 2 807 30 -0.96
JM1-14 122 0.03 0.001116 0.281 981 0.000 016 -28.00 -25.40 0.28 1 793 22 2 785 35 -0.97
JM1-15 122 0.02 0.000693 0.281 968 0.000 013 -28.40 -25.80 0.24 1 791 18 2 811 30 -0.98
图5 秦岭—桐柏—红安—大别造山带古生代及长江中下游地区中生代基性岩锆石 εHft )值与形成年龄关系图
秦岭造山带数据来自参考文献[ 22 64 - 76 ];大别造山带数据来自参考文献[ 22 77 ];长江中下游地区数据来自参考文献[ 78 - 79 ];桐柏造山带数据来自参考文献[ 80 ];红安造山带数据来自参考文献[ 22
Fig. 5 Diagram showing variations in zircon εHftvalues with age for the Paleozoic mafic magmatic rocks in the Qinling-Tongbai-Hong’an-Dabie Orogen and the Mesozoic ones in the Middle and Lower Reaches of the Yangtze River
Data of the Qinling Orogen are from references [22, 64-76];Data of the Dabie Orogen are from references [22,77];Data of the Middle and Lower reaches of the Yangtze River are from references [78-79];Data of the Tongbai Orogen are from reference [ 80 ];Data of the Hong’an Orogen are from reference [ 22
图6 合肥盆地基性岩二阶段Hf模式年龄柱状图
Fig. 6 Histogram of two-stage Hf model ages from the mafic magmatic rocks in the Hefei Basin
106 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J].中国科学: 地球科学, 2019, 49(9): 1 346-1 356.
107 LI Shuguang, HE Yongsheng, WANG Shuijiong. Process and mechanism of mountain-root removal of the Dabie Orogen: constraints from geochronology and geo-chemistry of post-collisional igneous rocks[J]. Chinese Science Bulletin, 2013, 58(35): 4 411-4 417.
李曙光, 何永胜, 王水炯. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约[J]. 科学通报, 2013, 58(23): 2 316-2 322.
108 CHEN Jun, SUN Lianpu, ZHOU Zuyi, et al. Wavelet analysis results of gravity anomalies and its geological significance in Hefei Basin[J]. Journal of Tongji University, 2005, 33(9): 1 244-1 247, 1 264.
陈军, 孙连浦, 周祖翼, 等. 合肥盆地重力异常特征及其地质意义[J]. 同济大学学报(自然科学版), 2005, 33(9): 1 244-1 247, 1 264.
109 ZHENG F, DAI L Q, ZHAO Z F, et al. Recycling of paleo-oceanic crust: geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai orogen, Central China[J]. Lithos, 2019, 328/329: 312-327.
110 CHEN Liang, SUN Yong, PEI Xianzhi, et al. Northernmost Paleo-Tethyan oceanic basin in Tibet: geochronological evidence from 40Ar-39Ar age dating of Dur’ngoi ophiolite[J]. Chinese Science Bulletin, 2001, 46(14): 1 203-1 205.
陈亮, 孙勇, 裴先治, 等. 德尔尼蛇绿岩40Ar-39Ar年龄: 青藏最北端古特提斯洋盆存在和延展的证据[J]. 科学通报, 2001, 46(14): 424-426.
111 LI Shuguang, HOU Zhenhui, YANG Yongcheng, et al. Geochemical characteristics and formation time of the Sanchazi magmatic arc in the Mianlue suture, South Qinling[J]. Science in China Series D: Earth Sciences, 2003, 33(12): 1 163-1 173.
李曙光, 侯振辉, 杨永成, 等. 南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代[J]. 中国科学D辑: 地球科学, 2003, 33(12): 1 163-1 173.
1 XU Zhiqin, LU Yilun, TANG Yaoqing, et al. Formation, deformation, evolution and plate dynamics of composite mountain chain in East Qinling[M]. Beijing: China Environmental Press, 1988.
许志琴, 卢一伦, 汤耀庆, 等. 东秦岭复合山链的形成—变形、演化和板块动力学[M]. 北京: 中国环境出版社, 1988.
2 ZHANG Guowei, MENG Qingren, YU Zaiping, et al. Orogenesis and dynamics of the Qinling orogen[J]. Science in China Series D: Earth Sciences, 1996, 39(3): 225-234.
张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学D辑: 地球科学, 1996, 26(3): 193-200.
3 YIN A, NIE S Y. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813.
4 RATSCHBACHER L, FRANZ L, ENKELMANN E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[J]. The Geological Society of America, 2006, 403: 45-75.
5 WU Y B, ZHENG Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1 402-1 428.
6 LIU Xiaochun, LI Sanzhong, JIANG Boming. Tectonic evolution of the Tongbai-Hong’an orogen in central China: from oceanic subduction/accretion to continent-continent collision[J]. Science China: Earth Sciences, 2015, 58(9): 1 477-1 496.
刘晓春, 李三忠, 江博明. 桐柏—红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 2015, 45(8): 1 088-1 108.
7 DONG Y P, SUN S S, SANTOSH M, et al. Central China orogenic belt and amalgamation of east Asian continents[J]. Gondwana Research, 2021, 100: 131-194.
8 OKAY A, XU S T, SENGOR A. Coesite from the Dabie Shan eclogites, central China[J]. European Journal of Mineralogy, 1989, 1: 595-598.
9 YANG J J, SMITH D C. Evidence for a former sanidine-coesite-eclogite at Lanshantou, eastern China, and the recognition of the Chinese “Su-Lu Coesite-Eclogite Province” [C]//Third international eclogite conference. Blackwell, 1989.
10 HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
11 FAURE M, LIN W, SCHÄRER U, et al. Continental subduction and exhumation of UHP rocks. structural and geochronological insights from the Dabieshan (east China)[J]. Lithos, 2003, 70(3/4): 213-241.
12 ZHENG Yongfei. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 2008, 53(20): 3 081-3 104.
郑永飞. 超高压变质与大陆碰撞研究进展: 以大别—苏鲁造山带为例[J]. 科学通报, 2008, 53(18): 2 129-2 152.
13 YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
14 CAWOOD P A, BUCHAN C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82(3/4): 217-256.
15 ZHENG Yongfei, CHEN Yixiang, DAI Liqun, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China: Earth Sciences, 2015, 58(7): 1 045-1 069.
郑永飞, 陈伊翔, 戴立群, 等. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带[J]. 中国科学: 地球科学, 2015, 45(6): 711-735.
16 YANG Kunguang, MA Changqian, XU Changhai, et al. Differential uplift between Beihuaiyang and Dabie orogenic belt[J]. Science in China Series D: Earth Sciences, 2000, 43(2): 193-199.
杨坤光, 马昌前, 许长海, 等. 北淮阳构造带与大别造山带的差异性隆升[J]. 中国科学D辑: 地球科学, 1999, 29(2): 97-103.
17 RATSCHBACHER L, HACKER B R, WEBB L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China: cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13 303-13 338.
18 WANG Yongsheng, WANG Haifeng, SHENG Yong, et al. Early Cretaceous uplift history of the Dabie orogenic belt: evidence from pluton emplacement depths[J]. Science China: Earth Sciences, 2014, 44(2): 200-212.
王勇生, 王海峰, 盛勇, 等. 大别造山带早白垩世抬升演化研究——来自岩体侵位深度的证据[J]. 中国科学: 地球科学, 2014, 44(2): 200-212.
19 LIN W, JI W B, FAURE M, et al. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China[J]. Tectonophysics, 2015, 662: 256-270.
20 LIU S, HELLER P L, ZHANG G. Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China[J]. Tectonics, 2003, 22(4): 1-21.
21 LIU Yican, HOU Kebin, YANG Yang, et al. Confirmation of the Ordovician granite from the Beihuaiyang zone in the dabie orogen: insight into eastern extension of the northern Qinling orogen[J]. Geotectonica et Metallogenia, 2021, 45(2): 401-412.
刘贻灿, 侯克斌, 杨阳, 等. 大别山北淮阳带奥陶纪花岗岩的厘定及其对北秦岭东延的启示[J]. 大地构造与成矿学, 2021, 45(2): 401-412.
22 WANG Y S, JIANG C, YANG J H, et al. Geochronology and geochemistry of Beilou granitic pluton: identification of early Palaeozoic arc magmatic rock in the Dabie Orogen, central China[J]. Geological Journal, 2022, 57(7): 2 540-2 563.
23 CHEN F K, GUO J H, JIANG L L, et al. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: evidence from zircon ages[J]. Journal of Asian Earth Sciences, 2003, 22(4): 343-352.
24 LI R W, LI S Y, JIN F Q, et al. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons[J]. Sedimentary Geology, 2004, 166(3/4): 245-264.
25 LI R W, WAN Y S, CHENG Z Y, et al. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 279-294.
26 ZHU G, WANG Y S, WANG W, et al. An accreted micro-continent in the north of the Dabie Orogen, East China: evidence from detrital zircon dating[J]. Tectonophysics, 2017, 698: 47-64.
27 LI Shuangying, WEI Xing, XIE Wei, et al. From source to sink: coupling relation between the Dabie Shan Orogen provenance and Mesozoic sediments of the south-margin of Hefei Basin, based on the evidence of detrital zircon ages[J]. Journal of Palaeogeography, 2019, 21(1): 82-106.
李双应, 魏星, 谢伟, 等. 从源到汇: 大别造山带物源区与合肥盆地南缘中生代沉积耦合关系: 来自碎屑锆石U-Pb年龄证据[J]. 古地理学报, 2019, 21(1): 82-106.
28 WANG Y S, BAI Q, TIAN Z Q, et al. Mesozoic unroofing history of the dabie orogen, Eastern China: evidence from detrital zircon geochronology of sediments in the Hefei Basin[J]. The Journal of Geology, 2021, 129(2): 183-206.
29 WANG Yongsheng, BAI Qiao, TIAN Ziqiang, et al. Detrital zircon U-Pb dating in the southern Hefei Basin: evidence for exhumation of HP-UHP rocks of the Dabie Orogen[J]. Science China (Series D Earth Sciences), 2020, 63(7): 954-968.
王勇生, 白桥, 田自强, 等. 合肥盆地南缘碎屑锆石定年及其对大别造山带超高压岩石折返的指示[J]. 中国科学: 地球科学, 2020, 50(7): 921-935.
30 LIU S F, ZHANG G W, RITTS B D, et al. Tracing exhumation of the Dabie Shan ultrahigh-pressure metamorphic complex using the sedimentary record in the Hefei Basin, China[J]. Geological Society of America Bulletin, 2010, 122(1/2): 198-218.
31 WU Y B, HANCHAR J M, GAO S, et al. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 345-354.
32 CHENG H, ZHANG C, VERVOORT J D, et al. New Lu-Hf geochronology constrains the onset of continental subduction in the Dabie orogen[J]. Lithos, 2011, 121(1/2/3/4): 41-54.
33 MENG Q R, LI S Y, LI R W. Mesozoic evolution of the Hefei Basin in Eastern China: sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault[J]. Geological Society of America Bulletin, 2007, 119(7/8): 897-916.
34 JIA Hongyi, CHEN Jianping, TAN Mingyou, et al. Application of joint-inversion of gravity, magnetic, electric and seismic data to exploration in Hefei basin[J]. Oil Geophysical Prospecting, 2003, 38(6): 680-686.
贾红义, 陈建平, 谭明友, 等. 重磁电震联合反演在合肥盆地勘探中的应用[J]. 石油地球物理勘探, 2003, 38(6): 680-686.
35 LIU Shaofeng, ZHANG Guowei. Mesozoic basin development and its indication of collisional orogeny in the Dabie orogen[J]. Chinese Science Bulletin, 2013, 58(8): 827-852.
刘少峰, 张国伟. 大别造山带周缘盆地发育及其对碰撞造山过程的指示[J]. 科学通报, 2013, 58(1): 1-26.
36 SHI Yonghong, CAO Sheng, WANG Juan, et al. Analysis of petrology, geochronology for Beihuaiyang metamorphic unit, and discussion about the suture of dabie orogen[J]. Chinese Journal of Geology, 2014, 49(2): 378-393.
石永红, 曹晟, 王娟, 等. 北淮阳变质单元岩石学、年代学分析及对大别造山带构造缝合线位置的探究[J]. 地质科学, 2014, 49(2): 378-393.
37 BELOUSOVA E A, GONZÁLEZ JIMÉNEZ J M, GRAHAM I, et al. The enigma of crustal zircons in upper-mantle rocks: clues from the Tumut ophiolite, southeast Australia[J]. Geology, 2015, 43(2): 119-122.
38 TORRÓ L, PROENZA J A, ROJAS-AGRAMONTE Y, et al. Recycling in the subduction factory: archaean to Permian zircons in the oceanic Cretaceous Caribbean Island-arc (Hispaniola)[J]. Gondwana Research, 2018, 54: 23-37.
39 XU Z, ZHENG Y F, ZHAO Z F. Zircon evidence for incorporation of terrigenous sediments into the Magma source of continental basalts[J]. Scientific Reports, 2018, 8(1): 1-10.
40 BEA F, BORTNIKOV N, MONTERO P, et al. Zircon xenocryst evidence for crustal recycling at the Mid-Atlantic Ridge[J]. Lithos, 2020, 354/355. DOI:10.1016/j.lithos.2019.105361 .
41 XU Shutong, JIANG Laili, LIU Yican, et al. Tectonic framework and evolution of the dabie mountains in Anhui, eastern China[J]. Acta Geological Sinica, 1992, 66(1): 1-14.
徐树桐, 江来利, 刘贻灿, 等. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 1992, 66(1): 1-14.
42 ZHAI M G, CONG B L, ZHAO Z Y, et al. Petrological-tectonic units in the coesite-bearing metamorphic terrain of the Dabie Mountains, central China and their geotectonic implications[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(1): 1-13.
43 ZHENG Y F, ZHOU J B, WU Y B, et al. Low-grade metamorphic rocks in the dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction[J]. International Geology Review, 2005, 47(8): 851-871.
44 LIN Wei, WANG Qingchen, FAURE M, et al. To understand the tectonic evolution of Dabie mountains through multiphase deformation of north Huaiyang tectonic belt[J]. Science in China Series D: Earth Sciences, 2005, 35(2): 127-139.
林伟, 王清晨, Faure M, 等. 从北淮阳构造带的多期变形透视大别山构造演化[J]. 中国科学D辑: 地球科学, 2005, 35(2): 127-139.
45 HACKER B R, RATSCHBACHER L, LIOU J G. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen[J]. Geological Society, London, Special Publications, 2004, 226(1): 157-175.
46 CONG B L, WANG Q C, ZHAI M G, et al. Ultra-high pressure metamorphic rocks in the Dabie-Su-Lu region, China: their formation and exhumation[J]. The Island Arc, 1994, 3(3): 135-150.
47 DONG Y P, LIU X M, NEUBAUER F, et al. Timing of Paleozoic amalgamation between the North China and South China blocks: evidence from detrital zircon U-Pb ages[J]. Tectonophysics, 2013, 586: 173-191.
48 LIAO X Y, WANG Y W, LIU L, et al. Detrital zircon U-Pb and Hf isotopic data from the Liuling Group in the South Qinling belt: provenance and tectonic implications[J]. Journal of Asian Earth Sciences, 2017, 134: 244-261.
49 LIU X C, JAHN B M, LI S Z, et al. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599: 67-88.
50 ZHENG Y F, WU Y B, CHEN F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4 145-4 165.
51 LIU S F, LIU W C, DAI S W, et al. Thrust and exhumation processes of bounding mountain belt: constrained from sediment provenance analysis of Hefei Basin, China[J]. Acta Geologica Sinica, 2001, 75: 144-150.
52 ZHANG J J, ZHENG Y F, ZHAO Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China[J]. Lithos, 2009, 110(1/2/3/4): 305-326.
53 WANG Y, ZHAO Z F, ZHENG Y F, et al. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China[J]. Lithos, 2011, 125(3/4): 940-955.
54 MA J, TIAN Y, ZHAO D, et al. Mantle dynamics of western Pacific and East Asia: new insights from P wave anisotropic tomography[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3 628-3 658.
55 CHEN Daogong, PENG Zicheng. K-Ar ages and Pb, Sr isotopic characteristics of some Cenozoic volcanic rocks from Anhui and Jiangsu provinces, China[J]. Acta Petrologica Sinica, 1988, 4(2): 3-12.
陈道公, 彭子成. 皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征[J]. 岩石学报, 1988, 4(2): 3-12.
56 CONG Bolin, WANG Qingchen, ZHANG Haizheng, et al. Petrogenesis of Cenozoic volcanic rocks in Hefei Basin, China[J]. Acta Petrologica Sinica, 1996, 12(3): 370-381.
从柏林, 王清晨, 张海政, 等. 中国合肥盆地新生代火山岩成因岩石学研究. 岩石学报, 1996, 12(3): 370-381.
57 YAN H Y, WANG F Y, GU H O, et al. Geochemical and Sr-Nd-Pb-Hf isotopic characteristics of muchen pluton in southeast China, constrain the petrogenesis of alkaline A-type magma[J]. Minerals, 2020, 10(80):1-29.
58 LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
59 LUDWIG K R. User’s manual for Isoplot 3.14: a geochronological toolkit for Microsoft excel[M]. California: Berkeley Geochronology Center, 2004.
60 BELOUSOVA E, GRIFFIN W, O’REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
61 HU Z C, LIU Y S, GAO S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1 391-1 399.
62 FISHER C M, VERVOORT J D, HANCHAR J M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data[J]. Chemical Geology, 2014, 363: 125-133.
63 BLICHERT-TOFT J, CHAUVEL C, ALBARÈDE F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248-260.
64 WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.
吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.
65 LAI Shaocong, QIN Jiangfeng. Zircon U-Pb dating and Hf isotopic composition of the Diabase Dike Swarm from Sanchazi area, Mianlue Suture—chronology evidence for the Paleo-Tethys crust subduction[J]. Journal of Earth Sciences and Environment, 2010, 32(1): 27-33.
赖绍聪, 秦江锋. 勉略缝合带三岔子辉绿岩墙锆石U-Pb年龄及Hf同位素组成——古特提斯洋壳俯冲的年代学证据[J]. 地球科学与环境学报, 2010, 32(1): 27-33.
66 JIANG Y H, JIN G D, LIAO S Y, et al. Petrogenesis and tectonic implications of ultrapotassic microgranitoid enclaves in Late Triassic arc granitoids, Qinling orogen, central China[J]. International Geology Review, 2012, 54(2): 208-226.
67 YANG P T, LIU S W, LI Q G, et al. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: constraints on petrogenesis and geodynamic processes[J]. Journal of Asian Earth Sciences, 2012, 61: 166-186.
68 YANG P T, LIU S W, LI Q G, et al. Chronology and petrogenesis of the Hejiazhuang granitoid pluton and its constraints on the Early Triassic tectonic evolution of the South Qinling Belt[J]. Science China Earth Sciences, 2014, 57(2): 232-246.
69 QIN J F, LAI S C, LI Y F. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, south Qinling[J]. Gondwana Research, 2013, 24(3/4): 1 108-1 126.
70 YANG T, ZHU L M, WANG F, et al. Geochemistry, petrogenesis and tectonic implications of granitic plutons at the Liziyuan orogenic goldfield in the Western Qinling Orogen, central China[J]. Geological Magazine, 2013, 150(1): 50-71.
71 GAO Xinyu, ZHAO Taiping, SHI Xiaobin, et al. Geochemisty and petrogenesis of the Early Cretaceous Shangcheng and Daquandian granites in the north Dabie mountains[J]. Geochimica, 2013, 42(4): 307-339.
高昕宇, 赵太平, 施小斌, 等. 大别山北麓早白垩世商城和达权店岩体的地球化学特征与成因[J]. 地球化学, 2013, 42(4): 307-339.
72 MAO S D, CHEN Y J, ZHOU Z J, et al. Zircon geochronology and Hf isotope geochemistry of the granitoids in the Yangshan gold field, western Qinling, China: implications for petrogenesis, ore genesis and tectonic setting[J]. Geological Journal, 2014, 49(4/5): 359-382.
73 YANG L Q, DENG J, DILEK Y, et al. Structure, geochronology, and petrogenesis of the late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen, China[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1 831-1 854.
74 DENG Z B, LIU S W, ZHANG W Y, et al. Petrogenesis of the Guangtoushan granitoid suite, central China: implications for Early Mesozoic geodynamic evolution of the Qinling Orogenic Belt[J]. Gondwana Research, 2016, 30: 112-131.
75 GUO X Q, YAN Z, AITCHISON J C, et al. Geochemistry, geochronology and Lu-Hf isotopes of peraluminous granitic porphyry from the walegen Au deposit, west Qinling terrane[J]. Acta Geologica Sinica, 2017, 91(6): 2 024-2 040.
76 HUANG Yaqi, QIU Kunfeng, YU Haocheng, et al. Petrogenesis of ore-hosting porphyry in the Gelouang gold deposit, west Qinling and its geological implications[J]. Acta Petrologica Sinica, 2020, 36(5): 1 567-1 585.
黄雅琪, 邱昆峰, 于皓丞, 等. 西秦岭格娄昂金矿床赋矿斑岩岩石成因及其地质意义[J]. 岩石学报, 2020, 36(5): 1 567-1 585.
77 LIU H N, LI X W, MO X X, et al. Early Mesozoic crustal evolution in the NW segment of West Qinling, China: evidence from diverse intermediate-felsic igneous rocks[J]. Lithos, 2021, 396/397. DOI:10.1016/j.lithos.2021.106187 .
78 YAN J, LIU X Q, WANG S N, et al. Metallogenic type controlled by Magma source and tectonic regime: geochemical comparisons of Mesozoic magmatism between the Middle-Lower Yangtze River Belt and the Dabie Orogen, Eastern China[J]. Ore Geology Reviews, 2021, 133. DOI:10.1016/j.oregeorev.2021.104095 .
79 ZHANG Mingchao, CHEN Renyi, YE Tianzhu, et al. Zircon U-Pb dating and Hf isotopic compositions of the Anjishan granodiorite porphyry and Weigang granodiorite in the ningzhen ore cluster area and their geological implications[J]. Acta Geologica Sinica, 2018, 92(11): 2 248-2 268.
张明超, 陈仁义, 叶天竺, 等. 宁镇矿集区安基山花岗闪长斑岩和韦岗花岗闪长岩的锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 地质学报, 2018, 92(11): 2 248-2 268.
80 WANG H, WU Y B, YANG J H, et al. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: a Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China[J]. Lithos, 2017, 282/283: 298-315.
81 FINCH R J. Structure and chemistry of zircon and zircon-group minerals[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 1-25.
82 ZHANG H F, YING J F, TANG Y J, et al. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism: evidence from zircon U-Pb geochronology and Hf isotopes from the Liaodong peninsula[J]. Gondwana Research, 2011, 19(2): 446-459.
83 WAN Y S, LI R W, WILDE S A, et al. UHP metamorphism and exhumation of the dabie orogen, China: evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 333-4 348.
84 YANG Juanhao, WANG Yongsheng, BAI Qiao, et al. LA-ICP-MS detrital zircon U-Pb dating of Mesozoic-Cenozoic sedimentary rocks in the central Hefei Basin and its geological significance[J]. Advances in Earth Science, 2022, 37(8): 871-880.
杨隽豪, 王勇生, 白桥, 等. 合肥盆地中部中—新生界沉积岩碎屑锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2022, 37(8): 871-880.
85 XIANG Hua, ZHENG Jianping, LI Yibing, et al. Phase equilibrium modeling of zircon stability in mantle peridotite: implication for crust-mantle interaction[J]. Science China: Earth Sciences, 2022, 65(2): 282-298.
向华, 郑建平, 李毅兵, 等. 地幔橄榄岩中锆石稳定性的相平衡模拟及其壳幔相互作用意义[J]. 中国科学: 地球科学, 2022, 52(2): 309-326.
86 LIU S, MA P, ZHANG B, et al. The horizontal slab beneath East Asia and its subdued surface dynamic response[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3). DOI:10.1029/2020JB021156 .
87 LI Z X, LI X H, KINNY P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122(1/2/3/4): 85-109.
88 ZHENG Yongfei. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 2003, 48(16): 1 705-1 720.
郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, 48(16): 1 705-1 720.
89 SHU L S, WANG B, CAWOOD P A, et al. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1 600-1 621.
90 LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
91 XU C H, ZHANG L, SHI H S, et al. Tracing an Early Jurassic magmatic arc from south to East China Seas[J]. Tectonics, 2017, 36(3): 466-492.
92 WU F Y, YANG J H, XU Y G, et al. Destruction of the north China craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 173-195.
93 SU Y P, ZHENG J P, GRIFFIN W L, et al. Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: constraints on the eastern subsurface boundary between the North and South China blocks[J]. Lithos, 2013, 175/176: 333-350.
94 XIA Y, XU X S, LIU L. Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: evidence from petrogenesis and tectonic setting of the dike swarms[J]. Lithos, 2016, 244: 182-204.
95 NI P, WANG G G, LI W S, et al. A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China[J]. Ore Geology Reviews, 2021, 133. DOI:10.1016/j.oregeorev.2021.104088 .
96 XU Zhiqin, LI Yuan, LIANG Fenghua, et al. A connection between of the Paleo-Tethys suture zone in the Qinling-Dabie-Sulu orogenic belt[J]. Acta Geologica Sinica, 2015, 89(4): 671-680.
许志琴, 李源, 梁凤华, 等. “秦岭—大别—苏鲁”造山带中“古特提斯缝合带”的连接[J]. 地质学报, 2015, 89(4): 671-680.
97 ZHANG Guowei, DONG Yunpeng, LAI Shaocong, et al. Mianle tectonic zone and Mianle suture zone on southern margin of Qinling-Dabie orogenic belt[J]. Science in China Series D: Earth Sciences, 2004, 47(4): 300-316.
张国伟, 董云鹏, 赖绍聪, 等. 秦岭—大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学D辑: 地球科学, 2003, 33(12): 1 121-1 135.
98 YAN Z, FU C L, WANG Z Q, et al. Late Paleozoic subduction-accretion along the southern margin of the north Qinling terrane, central China: evidence from zircon U-Pb dating and geochemistry of the Wuguan complex[J]. Gondwana Research, 2016, 30: 97-111.
99 CHEMENDA A I, YANG R K, STEPHAN J F, et al. New results from physical modelling of arc-continent collision in Taiwan: evolutionary model[J]. Tectonophysics, 2001, 333(1/2): 159-178.
100 KER C M, YANG H J, ZHANG J X, et al. Compositional and Sr-Nd-Hf isotopic variations of Baijingsi eclogites from the North Qilian orogen, China: causes, protolith origins, and tectonic implications[J]. Gondwana Research, 2015, 28(2): 721-734.
101 ZHANG Jianxin. The study of subduction channels: progress, controversies, and challenges[J]. Science China: Earth Sciences, 2020, 63(12): 1 831-1 851.
张建新. 俯冲隧道研究: 进展、问题及其挑战[J]. 中国科学: 地球科学, 2020, 50(12): 1 671-1 691.
102 MA Changqian, MING Houli, YANG Kunguang. An Ordovician magmatic arc at the northern foot of Dabie Mountains: evidence from geochronology and geochemistry of intrusive rocks[J]. Acta Petrologica Sinica, 2004, 20(3): 393-402.
马昌前, 明厚利, 杨坤光. 大别山北麓的奥陶纪岩浆弧: 侵入岩年代学和地球化学证据[J]. 岩石学报, 2004, 20(3): 393-402.
103 WANG Tao, WANG Xiaoxia, TIAN Wei, et al. North Qinling Paleozoic granite associations and their variation in space and time: implications for orogenic processes in the orogens of central China[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1 359-1 384.
王涛, 王晓霞, 田伟, 等. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学D辑: 地球科学, 2009, 39(7): 949-971.
104 ZHANG Chengli, LIU Liang, WANG Tao, et al. Granitic magmatism related to Early Paleozoic continental collision in the North Qinling belt[J]. Chinese Science Bulletin, 2013, 58(35): 4 405-4 410.
张成立, 刘良, 王涛, 等. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 2013, 58(23): 2 323-2 329.
105 DAI Liqun, ZHAO Zifu. Mafic igneous rocks in continental collision orogen record recycling of subducted paleo-oceanic crust[J]. Earth Science, 2019, 44(12): 4 128-4 134.
戴立群, 赵子福. 大陆碰撞造山带镁铁质岩浆岩记录俯冲古洋壳物质再循环[J]. 地球科学, 2019, 44(12): 4 128-4 134.
106 ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China: Earth Sciences, 2019, 62(9): 1 340-1 350.
[1] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[2] 丁汝鑫,王利,许长海,周祖翼. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比[J]. 地球科学进展, 2009, 24(8): 942-946.
[3] 武红岭,董树文. 大别造山带构造超压形成的碰撞力学机理[J]. 地球科学进展, 2001, 16(4): 478-483.
阅读次数
全文


摘要