地球科学进展 ›› 2001, Vol. 16 ›› Issue (4): 478 -483. doi: 10.11867/j.issn.1001-8166.2001.04.0478

学术论文 上一篇    下一篇

大别造山带构造超压形成的碰撞力学机理
武红岭,董树文   
  1. 中国地质科学院地质力学研究所,北京 100081
  • 收稿日期:2000-09-18 修回日期:2001-01-18 出版日期:2001-08-01
  • 通讯作者: 武红岭(1948-), 女,北京市人,研究员,主要从事构造地质的数学力学分析和地球动力学方面的研究工作. E-mail:wuhl2000@263.net
  • 基金资助:

    国家自然科学国家自然科学基金项目“大别山超高压岩石的碰撞力学成因和流变学分析”(编号:19972064);国土资源部“九五”重大地质基础研究项目“大别山造山带深部作用与成矿专题”(编号:9501102-3)资助.

COLLISIONAL MECHANISM OF FORMING THE ULTRA-HIGH PRESSURE IN DABIE OROGENIC BELT

WU Hongling,DONG Shuwen   

  1. Institute of Geomechanics, CAGS, Beijing  100081,China
  • Received:2000-09-18 Revised:2001-01-18 Online:2001-08-01 Published:2001-08-01

提出了大别山构造超压形成的点碰撞模型,简要分析了大陆碰撞带构造运动引起的粘性介质中粘性应力和平均应力随岩石物性的变化规律,探讨了构造压力对超高压的贡献及对成岩深度的重要意义。研究表明:构造运动引起的岩石圈中的附加压力可能与静岩压力有相同的数量级,大陆造山带两陆块不规则边界的碰撞会引起局部应力集中, 产生较大的构造压力。岩石介质的流变学分析表明,在相同外力作用下,岩石圈上部的高粘度性质决定了其在构造活动期间增温效果显著,但增压效果有限;而粘性较低的岩石圈下部则增压效果明显。为此,在下地壳与上地幔之间的低粘度带内有可能发生超高压变质作用。

A mechanical model of point-collision is given for explaining the formation of ultra-high pressure in Dabie orogenic belt, central China. During the collision of the continents deviatoric stresses and average pressure in visco fluid are studied respectively. The contribution of the tectonic pressure to ultra-high pressure and its implication to exhumation of the UHP rocks are also discussed. The results show that tectonic pressure due to crustal movements may be equal in magnitude order to lithostatic pressure. The collision of the irregular boundary between two continents will produce local stress concentration. Rheological analysis of rock material have proved that in the crust the effect of increasing pressure is not very noticeable during the tectonic movements,
but in upper mantle it may be noticeable owing to the lower viscosity. So it is possible that metamorphism of UHP can be occurred in lower viscose rocks between the lower crust and upper mantle.

中图分类号: 

[1]  Green H W II. Metastable growth of coesite in high strained quartz[J]. J G R, 1972,77(14):2 478-2 482.
[2]  Smith D C. Coesite in clinopyroxene in the caledonides and its implications for geodynamics[J]. Nature,1984,310(23):641-644. 
[3]  Mancktelow N S. Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[J]. J G R, 1995, 100(B1):571-583.
[4]  Coleman R G, Wang X. Overview of the geology and of UHPM[A]. In: Ultrahigh Pressure Metamorphism[C]. London: Cambridge Univ Press, 1995. 1-32.
[5] Wang Fangzheng. A discussion on depth of forming high pressure and ultra-high pressure metamorphic rocks[J]. Journal of China University of Geosciences, 1996, 21(1):41-44.[王方正. 高压、超高压变质岩形成深度讨论[J]. 地球科学,1996,21(1):41-44.]
[6]  Lu Guxian, Chen Jing, Li Xiaobo,et al. Estimation of tectonic added pressure and depth of forming coesite-bearing eclogites[J]. Chinese Science Bulletin, 1998, 43 (24): 2 590-2 602.[吕古贤, 陈晶, 李晓波,等. 构造附加静水压力研究与含柯石英榴辉岩成岩深度测算[J]. 科学通报,1998,43(24):2 590-2 602.]
[7]  Dong Shuwen, Sun Xianzhi, Wang Gang, et al. Essential tectonics of Dabie Shan orogenic belt[J]. Chinese Science Bulletin, 1993, 38: 1884-1 888.[董树文,孙先知,王刚,等. 大别山造山带基本结构[J]. 科学通报, 1993,38:1 884-1 888.]
[8]  Hacker B, Ratschbachor L, Webb L, et al. U/Pb Ziron ages constrain the architecture of the Ultrahigh-pressure Qinling-Dabie Orogen[J]. China Earth Plan Sci Let, 1998, 161: 215-230.
[9]  Zhao X, Coe R. Paleomagnetic constraints in the collision and rotation of north and south China[J]. Nature, 1987, 327:141-144.
[10]  Yang Z Y, Courtillot V, Besse J, et al. Jurassic paleomagnetic constraints on the collision of the North and South China Blocks[J]. Geophys Res Lett, 1992, 19 (6): 577-580.
[11]  Gilder S, Courtillot V. Timing of North-South China collision from new middle to late Mesozoic paleomagnitic data from the North China block[J].  J G R , 1997,102 (B8): 17 713-17 728.
[12]  Eide E A. A model for the tectonic history of HP and UHPM regions in east central China[A]. In: Coleman R G, Wang X. Ultrahigh Pressure Metamorphism.[C]. London: Cambridge Univ Press, 1995. 
[13]  Turcotte D L, Oxburgh E R. Stress accumulation in the lithosphere[J]. Tectonophysics,1976, 35:183-199.
[14]  Wang Ren, Ding Zhongyi. Global stress field caused by Earth's rotationchanging in the case of axial symmetry[J].  J Geomechanics, 1982,6:193-196.[王仁,丁中一. 轴对称情况下地球自转速度变化引起的全球应力场[J]. 地质力学论丛,1982,6:193-196.]
[15]  Hanks T C, Releigh C B. The conference on magnitude of deviatoric stress in the Earth's crust and uppermost mantle[J]. J G R, 1980, 85(B11):6 083-6 085.
[16]  Dong Shuwen, Wu Xuanzhi, Gao Rui, et al. On the crust velocity levels and dynamics of the Dabie Shan orogenic belt[J].  Acta Geophysica Sinica, 1998, 41(3): 349-361.[董树文,吴宣志,高锐,等. 大别造山带地壳速度结构与动力学[J]. 地球物理学报,1998,41(3):349-361.]
[17]  Gao Shan, Jin Zhenmin, Kern H, et al. Laboratory high temperature and high- pressure test study of seismic wave’s speed and density of ultrahigh-pressure eclogites from the Dabie Shan[J]. Chinese Science Bulletin, 1997, 42(8):862-865.[高山,金振民, Kern H,等. 大别超高压榴辉岩高温高压下地震波速和密度的初步实验研究[J]. 科学通报,1997,42(8):862-865.]
[18]  Wang C Y, Shi Y L, Zhou W. On the tectonics of the Himalaya and the Tibet plateau[J].J G R. 1982, 87(B4): 2 949-2 957.
[19]  Song Chuanzhong, Zhang Guowei. Rheojogy and Dynamics of the eastern Qinling orogenic belt[J]. Acta Geophysica Sinica,1998, 41(Supp.), 55-63.
[宋传中,张国伟. 东秦岭造山带的流变学及动力学分析[J]. 地球物理学报,1998,41(增刊):55-63.]
[20]  Zeng Lixing. Laboratory test method study of deep rock physical mechanics[J]. Journal of Geomechanics, 1999, 5 (1):71-75. [曾立新. 深层岩石力学性质的试验方法[J]. 地质力学学报,1999,5(1):71-75.]
[21]  Yang Xiaoyong, Yang Xueming, Liu Deling, et al. A micro-structural evidences of tectonic superimposition (compound) by south part of TanchengLujiang Fault belt and Dabie -Jiaonan orogenic belt[J]. 1998, Acta Geophysica Sinica, 41(Suppl.), 123-132.[杨晓勇,杨学明,刘德良,等. 郯庐断裂带南段与大别胶南造山带构造复合的显微构造证据[J]. 地球物理学报,1998,41(增刊):123-132.]

[1] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
阅读次数
全文


摘要