地球科学进展 ›› 2009, Vol. 24 ›› Issue (8): 942 -946. doi: 10.11867/j.issn.1001-8166.2009.08.0942

研究简报 上一篇    下一篇

大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比
丁汝鑫 1,2,王利 3,许长海 3,周祖翼 3   
  1. 1.中国石油化工股份有限公司石油勘探开发研究院,北京 100083; 2.中国地质大学(北京),北京 100083;
    3.同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2009-02-20 修回日期:2009-05-27 出版日期:2009-08-10
  • 通讯作者: 丁汝鑫 E-mail:jiowr@sohu.com
  • 基金资助:

    国家自然科学基金项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号40621063)资助.

Quantitative Contrast of Dabie Orogenic Erosion and Adjacent Sedimentary Basins Deposition through Thermal History Modelling of Fission Track

Ding Ruxin 1,2, Wang Li 3, Xu Changhai 3, Zhou Zuyi 3   

  1. 1.SINOPEC Exploration & Production Research Institute , Beijing 100083,China;2.China University of Geosciences, Beijing 100083,China;3. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
  • Received:2009-02-20 Revised:2009-05-27 Online:2009-08-10 Published:2009-08-10
  • Supported by:

    国家自然科学基金项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号40621063)资助

通过利用裂变径迹热史模拟来探讨山盆之间剥蚀沉积关系为定量对比山盆之间剥蚀沉积关系提供了一种可能的途径。其原理主要是通过裂变径迹热史曲线,求取造山带区域平均剥露速率,再将其与毗邻盆地沉积速率对比,进而判断山盆之间剥蚀沉积比例关系。通过计算可以得到大别造山带65~25 Ma区域体积平均剥露速率为1 189.67 km3/Ma(当古地温梯度为25℃/km时)、1 487.08 km3/Ma(当古地温梯度为20℃/km时)。其剥蚀速率至少占到了毗邻盆地古近纪平均总沉积速率的一半以上。其原理主要是通过裂变径迹热史曲线,求取造山带区域平均剥露速率,再将其与毗邻盆地沉积速率对比,进而判断山盆之间剥蚀沉积比例关系。

      Thermal history modelling of fission track opens a promising passage for the quantitative study of the relationship between the orogenic belt erosion and the sedimentary basin deposition. The working principle is to get the average exhumation rates of the orogenic belt through the thermal history modelling of fission track, then compare the exhumation rates with the average deposition rates of the adjacent basins to  estimate the proportional relationship between the orogenic belt erosion and the sedimentary basin deposition. With this method, the average exhumaition rates of regional volume are 1 189.67 km3/Ma(with the paleogeothermal gradient being 25 ℃/km) and 1487.08 km3/Ma (with the paleogeothermal gradient being 20 ℃/km) between 65 and 25 Ma in Dabie orogen. They are at least half of average total deposition rates of the adjacent basins in Paleogene.

中图分类号: 

[1] Hay W W, Shaw C A, Wold C. Mass-balanced paleogeographic reconstruction[J].Geologische Rundschau,1989, 78(1):207-242.
[2] Wang Li, Zhou Zuyi, Ding Ruxin. Mass balance analysis of the Dabie orogenic belt and its adjacent cenozoic sedimentary basins[J].Geological Review, 2007,53 :301-305.[王利,周祖翼,丁汝鑫. 大别造山带毗邻新生代盆地物质平衡分析[J].地质论评,2007,53:301-305.]
[3] Kohn B P, Gleadow A J W, Brown R W, et al.Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic and denudation studies of key terranes[J].Australian Journal of Earth Sciences, 2002,49:697-717.
[4] Gunnell Y, Gallagher K, Carter A, et al. Denudation history of the continental margin of western penisular India since the early Mesozoic reconciling apatite fission-track data with geomorphology[J].Earth and Planetary Science Letters,2003,215:187-201.
[5] Wagner  G, Van Den Haute  P. Fission Track Dating[M]. Netherlands: Kluwer Academic Publishers, 1992:1-275.
[6] Gallagher  K , Brown  R W, Johnson  C. Fission track analysis and its applications to geological problems[J].Annual Review Earth and Planetary Sciences,1998, 26:519-572.
[7] Dumitru T A. Fissiontrack geochronology[C]//Noller J S, Sowers J M, Lettis W R, eds. Quaternary Geochronology: Methods and Applications American Geophysical Union, Washington DC, 2000:131-155.
[8] Wilett S D,Issler D R,Beaumont C,et al.Inverse modelling of annealing of fission tracks in a patite 1:A controlled random search method[J].American Journal of Science,1997,297:939-959.
[9] Lutz T M,O mar G.An inverse method ofmodelling thermal histories from apatite fission track data[J].Earth and Planetary Science Letters,1991,104:181-195.
[10] Ketcham R A. Forward and inverse modelling of low-temperature thermochronometry data[J].Reviews in Mineralogy & Geochemistry,2005, 58:275-314.
[11] Ketcham R A, Donelick R A, Donelick M B. AFTSolve: A program for multi-kinetic modelling of apatite fission-track data[J].Geological Materials Research,2000,2:1-32.
[12] Laslett G M, Green P F, Duddy I R,et al.Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J].Chemical Geology(Isotope Geoscience Section),1987, 65:1-13.
[13] Crowley K D , Cameron M , Schaefer R L. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochimica et Cosmochimica Acta,1991, 55:1 449-1 465.
[14] Ketcham  R A , Donelick  R A , Carlson W D. Variability of apatite fission track annealing kinetics III: Extrapolation to geological time scales[J].American Mineralogist,1999, 84:1 235-1 255.
[15] Reiners P W, Zhou Z Y, Ehlers T A,et al.Post-orogenic evolution of the dabie shan,eastern China,from (U-Th)/He and fission-track thermochronology[J].American Journal of Science,2003, 303: 489-518.
[16] Ding Ruxin, Zhou Zuyi, Xu Changhai,et al. Modelling of low-temperature exhumation rate in Dabie Shan based on(U-Th)/He and fission-track thermochronological data[J].Science in China (Series D),2006, 49:1 009-1 019.[丁汝鑫,周祖翼,许长海,等.大别山区域低温剥露作用:基于(U-Th)/He和裂变径迹年代学数据的模拟[J]. 中国科学:D缉,2006,36(8):689-697.]
[17] Kohn B P, Gleadow A J W, Brown R W, et al.Visualizing thermotectonic and denudation histories using apatite fission track thermochronology. Low-Temperature Thermochronology: Techniques, Interpretations, and Applications[C]//Reiners P W, Ehlers T A, eds. Reviews in Mineralogy, 2005,58: 567-588.
[18] Xu Changhai, Zhou Zuyi,  Van Den Haute P,et al.Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J].Science in China (Series D),2005, 48(4): 506-520.[许长海, 周祖翼, Van Den Haute P,等.大别造山带磷灰石裂变径迹(AFT)年代学研究[J]. 中国科学:D辑,2004, 34(7): 622-634.]
[19] Xu Changhai, Zhou Zuyi,Van Den Haute P,et al.Apatite fission-track thermochronology of tectonic evolution in Hefei Basin[J]. Acta Petrolei Sinica,2006,27(6):5-13.[许长海,周祖翼,Van Den Haute P,等.合肥盆地构造演化的磷灰石裂变径迹分析[J].石油学报,2006,27(6):5-13.]

[1] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[2] 焦若鸿,许长海,张向涛,阙晓铭. 锆石裂变径迹(ZFT)年代学:进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182.
[3] 王建平,翟裕生,刘家军,柳振江,刘 俊. 矿床变化与保存研究的裂变径迹新途径[J]. 地球科学进展, 2008, 23(4): 421-427.
[4] 武红岭,董树文. 大别造山带构造超压形成的碰撞力学机理[J]. 地球科学进展, 2001, 16(4): 478-483.
[5] 王 毅,金之钧. 沉积盆地中恢复地层剥蚀量的新方法[J]. 地球科学进展, 1999, 14(5): 475-481.
[6] 朱起煌. 裂变径迹热年代学[J]. 地球科学进展, 1993, 8(6): 79-80.
[7] 任战利. 沉积盆地热演化史研究新进展[J]. 地球科学进展, 1992, 7(3): 43-.
阅读次数
全文


摘要