[1]Hurford A J, Green P F. A users′ guide to fission track dating calibration[J].Earth and Planetary Science Letters,1982, 59(2): 343-354. [2]Hurford A J, Green P F. The zeta age calibration of fissiontrack dating[J].Chemical Geology,1983,41:285-317. [3]Laslett G M, Green P F, Duddy I R,et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J].Chemical Geology: Isotope Geoscience Section,1987, 65(1): 1-13. [4]Crowley K D, Cameron M, Schaefer R l. Experimental studies of annealing of etched fission tracks in fluorapatite[J].Geochimica et Cosmochimica Acta,1991,55(5): 1 449-1 465. [5]Laslett G M, Galbraith R F. Statistical modelling of thermal annealing of fission tracks in apatite[J]. Geochimica et Cosmochimica Acta,1996, 60(24): 5 117-5 131. [6]Galbraith R F, Laslett G M. Statistical modelling of thermal annealing of fission tracks in zircon[J]. Chemical Geology,1997, 140(1/2): 123-135. [7]Yamada R, Tagami T, Nishimura S,et al. Annealing kinetics of fission tracks in zircon: An experimental study[J].Chemical Geology,1995, 122(1/4): 249-258. [8]Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fissiontrack annealing kinetics I. Experimental results[J].American Mineralogist,1999, 84(9): 1 213-1 223. [9]Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fissiontrack annealing kinetics II. Crystallographic orientation effects[J].American Mineralogist,1999, 84(9): 1 224-1 234. [10]Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fissiontrack annealing kinetics III. Extrapolation to geological time scales[J].American Mineralogist,1999, 84(9): 1 235-1 255. [11]Wagner G A, van den Haute P. Fission Track Dating[M].Dordrecht: Kluwer Academic Publisher, 1992. [12]Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems[J].Annual Review of Earth and Planetary Sciences,1998, 26(1): 519-572. [13]Gleadow A J W, Belton D X, Kohn B P,et al. Fission track dating of phosphate minerals and the thermochronology of apatite[J].Reviews in Mineralogy and Geochemistry,2002, 48(1): 579-630. [14]Donelick R A, O′Sullivan P B, Ketcham R A. Apatite fissiontrack analysis[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 49-94. [15]Tagami T, O′Sullivan P B. Fundamentals of fissiontrack thermochronology[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 19-47. [16]Tagami T. Zircon fissiontrack thermochronology and applications to fault studies[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 95-122. [17]Tagami T, Ito H, Nishimura S. Thermal annealing characteristics of spontaneous fission tracks in zircon [J].Chemical Geology: Isotope Geoscience Section,1990,80(2): 159-169. [18]Hasebe N, Tagami T, Nishimura S. Towards zircon fission-track thermochronology: Reference framework for confined track length measurements[J].Chemical Geology,1994, 112(1/2): 169-178. [19]Yamada R,Tagami T, Nishimura S. Assessment of overetching factor for confined fission-track length measurement in zircon[J].Chemical Geology,1993, 104(1/4): 251-259.[ZK)] [20]Yamada R,Tagami T, Nishimura S. Confined fission-track length measurement of zircon: Assessment of factors affecting the paleotemperature estimate[J].Chemical Geology,1995, 119 (1/4): 293-306. [21]Yamada R, Murakami M, Tagami T. Statistical modelling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiments[J].Chemical Geology,2007, 236 (1/2): 75-91. [22]Garver J I. Etching zircon age standards for fissiontrack analysis[J].Radiation Measurements,2003,37(1): 47-53. [23]Hurford A J. Standardization of fission track dating calibration: Recommendation by the fission track working group of the I.U.G.S. subcommission on geochronology[J].Chemical Geology: Isotope Geoscience Section,1990, 80 (2): 171-178. [24]Svojtka M, Kosler M. Fissiontrack dating of zircon by laser ablation ICPMS[J].Geochimica et Cosmochimica Acta,2002,66: A756. [25]Kosler J, Sylvester P J. Present trends and the future of zircon in geochronology: Laser ablation ICPMS[J].Reviews in Mineralogy and Geochemistry,2003, 53(1): 243-275. [26]Hasebe N, Barbarand J, Jarvis K,et al. Apatite fissiontrack chronometry using laser ablation ICPMS[J].Chemical Geology, 2004, 207(3/4): 135-145. [27]Hasebe N, Carter A, Hurford A J,et al. The effect of chemical etching on LA-ICP-MS analysis in determining uranium concentration for fissiontrack chronometry[J].Geological Society, London, Special Publications,2009, 324(1): 37-46. [28]Bernet M,Garver J I. Fission-track analysis of detrital zircon[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 205-237. [29]Kasuya M, Naeser C W. The effect of [alpha]-damage on fission-track annealing in zircon[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1988, 14(4): 477-480. [30]Zaun P E, Wagner G A. Fission-track stability in zircons under geological conditions[J].Nuclear Tracks and Radiation Measurements,1985, 10(3): 303307.[ZK)] [31]Gleadow A J W, Hurford A J, Quaife R D. Fission track dating of zircon: Improved etching techniques[J]. Earth and Planetary Science Letters,1976, 33(2): 273-276. [32]Yamada R, Yoshioka T, Watanabe K,et al. Comparison of experimental techniques to increase the number of measurable confined fission tracks in zircon[J].Chemical Geology,1998, 149(1/2): 99-107. [33]Tagami T, Galbraith R F, Yamada R,et al. Revised annealing kinetics of fission tracks in zircon and geological implications[C]∥Van Den Haute P, De Corte F, eds. Advances in FissionTrack Geochronology. Dordrecht: Kluwer Academic Publishers, 1998: 99-112. [34]Murakami M, Yamada R, Tagami T. Short-term annealing characteristics of spontaneous fission tracks in zircon: A qualitative description[J].Chemical Geology,2006,227(3/4): 214-222. [35]Rahn M K, Brandon M T, Batt G E, et al. A zero-damage model for fissiontrack annealing in zircon[J]. American Mineralogist,2004,89(4): 473-484. [36]Guedes S, Hadler N J C, Iunes P J, et al. Kinetic model for the annealing of fission tracks in zircon [J].Radiation Measurements,2005, 40(2/6): 517-521. [37]Hasebe N, Mori S, Tagami T,et al. Geological partial annealing zone of zircon fissiontrack system: Additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima[J].Chemical Geology,2003,199(1/2): 45-52. [38]Brix M R, Stöckhert B, Seidel E,et al. Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece[J].Tectonophysics, 2002, 349(1/4): 309-326. [39]Ehlers T A, Chaudhri T, Kumar S, et al. Computational tools for lowtemperature thermochronometer interpretation[J].Reviews in Mineralogy and Geochemistry,2005, 58 (1): 589-622. [40]Bernet M. A fieldbased estimate of the zircon fissiontrack closure temperature[J].Chemical Geology, 2009, 259(3/4): 181-189. [41]Tagami T, Carter A, Hurford A J. Natural longterm annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature[J]. Chemical Geology,1996,130(1/2): 147-157. [42]Harrison T M, Armstrong R L, Naeser C W,et al. Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia[J].Canadian Journal of Earth Sciences,1979, 16(3): 400-410. [43]Hurford A J. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line[J].Contributions to Mineralogy and Petrology,1986, 92(4): 413-427. [44]Foster D A, Kohn B P, Gleadow A J W. Sphene and Zircon Fission Track Closure Temperatures Revisited: Empirical Calibrations from 40Ar/39Ar Diffusion Studies of K-Feldspar and Biotite[M]. Ghent: University of Ghent, 1996. [45]Brandon M T, RodenTice M K, Garver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington state[J].Geological Society of America Bulletin,1998, 110(8): 985-1 009. [46]Armstrong P A. Thermochronometers in Sedimentary basins[J].Reviews in Mineralogy and Geochemistry,2005,58(1): 499-525. [47]Gleadow A J W, Duddy I R. A natural longterm track annealing experiment for apatite[J].Nuclear Tracks,1981, 5(1/2): 169-174. [48]Vermeesch P, Avigad D, McWilliams M O. 500 m.y. of thermal history elucidated by multi-method detrital thermochronology of north Gondwana Cambrian sandstone (Eilat area, Israel)[J].Geological Society of America Bulletin, 2009, 121(7/8): 1 204-1 216. [49]Garver J I, Reiners P W, Walker L J, et al. Implications for timing of andean uplift from thermal resetting of radiationdamaged zircon in the Cordillera Huayhuash, Northern Peru[J].The Journal of Geology,2005, 113(2): 117-138. [50]Hurford A J, Carter A. The role of fission track dating in discrimination of provenance[J].Geological Society, London, Special Publications,1991, 57(1): 67-78. [51]Carter A. Present status and future avenues of source region discrimination and characterization using fission track analysis[J].Sedimentary Geology,1999, 124(1/4): 31-45. [52]Bernet M, Van Der Beek P, Pik R,et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fissiontrack and U/Pb analysis of Siwalik sediments, western Nepal[J].Basin Research,2006, 18(4): 393-412. [53]Dunkl I, Di Giulio A, Kuhlemann J. Combination of singlegrain fissiontrack chronology and morphological analysis of detrital zircon crystals in provenance studies: Sources of the macigno formation (Apennines, Italy) [J].Journal of Sedimentary Research,2001, 71(4): 516-525. [54]Roddick J C, Bevier M L. UPb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons,Canadian appalachians[J].Chemical Geology, 1995, 119(1/4): 307-329. [55]Garver J I, Kamp P J J. Integration of zircon color and zircon fissiontrack zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand[J\.Tectonophysics,2002, 349(1/4): 203-219. [56]Zhang Pei, Zhou Zuyi.Geological applications of detrital thermochronology[J].Advances in Earth Science, 2008,23 (11): 1 130-1 140.[张沛, 周祖翼. 碎屑矿物热年代学研究进展[J].地球科学进展, 2008, 23 (11): 1 130-1 140] [57]Zeitler P K, Johnson N M, Briggs N D,et al. Uplift History of the NW Himalaya as Recorded by FissionTrack Ages on Detrital Siwalik Zircons[M].Beijing: Geological Publishing House, 1986. [58]Bernet M, Brandon M T, Garver J I,et al. Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps[J].Geological Society of America Special Papers, 2004,378: 25-36. [59]Ruiz G M H, Seward D, Winkler W. Detrital thermochronology—A new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador[J].Basin Research,2004, 16(3): 413-430. [60]Bernet M, Zattin M, Garver J I,et al. Steadystate exhumation of the European Alps[J].Geology,2001,29(1): 35-38. [61]Willett S D, Brandon M T. On steady states in mountain belts[J].Geology,2002,30(2): 175-178. [62]Garver J I, Brandon M T, RodenTice M,et al. Exhumation history of orogenic highlands determined by detrital fissiontrack thermochronology[J].Geological Society, London, Special Publications,1999,154(1): 283-304. [63]Bernet M, Brandon M, Garver J,et al. Exhuming the Alps through time: Clues from detrital zircon fission-track thermochronology [J].Basin Research,2009, 21(6): 781-798. [64]England P, Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks[J].Geology,1990,18(12):1 173-1 177. [65]Reiners P W, Brandon M T. Using thermochronology to understand orogenic erosion[J].Annual Review of Earth and Planetary Sciences,2006, 34: 419-466. [66]Fitzgerald P G, Sorkhabi R B, Redfield T F,et al. Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters[J]. Journal of Geophysical Research,1995, 100(B10): 20 175-20 191. [67]Spotila J A. Applications of lowtemperature thermochronometry to quantification of recent exhumation in mountain belts[J].Reviews in Mineralogy and Geochemistry,2005,58 (1): 449-466. [68]Reiners P W. Thermochronologic approaches to paleotopography[J].Reviews in Mineralogy and Geochemistry, 2007, 66(1): 243-267. [69]Gleadow A J W, Brown R W. Fissiontrack thermochronology and the long-term denudational response to tectonics[C]∥Summerfield M A, ed. Geomorphology and Global Tectonics. Chichester: John Wiley & Sons, 2000:57-75. [70]Kohn B P, Gleadow A J W, Brown R W,et al. Visualizing Thermotectonic and denudation histories using apatite fission track thermochronology[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 527-565. [71]Reiners P W. Zircon (UTh)/He thermochronometry[J].Reviews in Mineralogy and Geochemistry,2005,58(1):151-179. [72]Braun J. Quantifying the effect of recent relief changes on ageelevation relationships[J].Earth and Planetary Science Letters,2002, 200(3/4):331-343. [73]Spikings R A, Winkler W, Seward D,et al. Alongstrike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust[J].Earth and Planetary Science Letters,2001, 186(1): 57-73. [74]Willett S D, Fisher D, Fuller C,et al. Erosion rates and orogenicwedge kinematics in Taiwan inferred from fission-track thermochronometry[J].Geology,2003, 31(11): 945-948. [75]Blythe A E, Burbank D W, Carter A,et al. PlioQuaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite[U-Th]/He analyses[J].Tectonics,2007,26(3):TC3002,doi:10.1029/2006TC001990. [76]Ding Ruxin, Zhou Zuyi, Wang Wei. Modeling exhumation rates of orogenic belts with low-temperature thermochronological data[J].Advances in Earth Science,2007, 22(5): 447-455.[丁汝鑫, 周祖翼, 王玮.利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-455.] [77]Yamada K, Tagami T. Postcollisional exhumation history of the Tanzawa tonalite complex, inferred from (U-Th)/He thermochronology and fission track analysis[J].Journal of Geophysical Research,2008, 113(B3): B03402, doi:10.1029/2007-JB005368. [78]Zhou Zuyi, Xu Changhai, Reiners P W,et al. Late CretaceousCenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen: Constraints from (U-Th)/He and fission track analysis[J].Chinese Science Bulletin,2003,48(11): 1 151-1 156.[周祖翼, 许长海, Reiners P W,等. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分析证据 [J]. 科学通报,2003, 48(6): 598-602.] [79]Stockli D F. Application of low-temperature thermochronometry to extensional Tectonic settings[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 411-448. [80]Seward D, Vanderhaeghe O, Siebenaller L,et al. Cenozoic tectonic evolution of Naxos island through a multi-faceted approach of fissiontrack analysis[J].Geological Society, London, Special Publications,2009, 321(1): 179-196. [81]Brichau S, Ring U, Ketcham R A,et al.Constraining the longterm evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology[J].Earth and Planetary Science Letters,2006, 241(1/2): 293-306. [82]Armstrong P A, Ehlers T A, Chapman D S,et al. Exhumation of the central Wasatch mountains, Utah: 1. Patterns and timing of exhumation deduced from low-temperature thermochronology data[J].Journal of Geophysical Research,2003, 108(B3):2 172, doi: 10.1029/2001JB001708. [83]Tippett J M, Kamp P J J. Fission track analysis of the late cenozoic vertical kinematics of continental pacific crust, south island, New Zealand[J].Journal of Geophysical Research,1993, 98(B9): 16 119-16 148. [84]Murakami M, Tagami T, Hasebe N. Ancient thermal anomaly of an active fault system: Zircon fission-track evidence from Nojima GSJ 750 m borehole samples[J].Geophysical Research Letters,2002, 29(23): 2 123. [85]Tagami T, Murakami M. Probing fault zone heterogeneity on the Nojima fault: Constraints from zircon fissiontrack analysis of borehole samples[J].Tectonophysics,2007, 443(3/4): 139-152. [86]Gallagher K. Evolving temperature histories from apatite fission-track data[J].Earth and Planetary Science Letters,1995,136(3/4): 421-435. |