地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 323 -333. doi: 10.11867/j.issn.1001-8166.2015.03.0323

上一篇    下一篇

冰核对云物理属性和降水影响的研究
尹金方 1( ), 王东海 1, 许焕斌 2, 翟国庆 3, 姜晓玲 1   
  1. 1.中国气象科学研究院灾害天气国家重点实验室,北京 100081
    2.北京应用气象研究所,北京100081
    3.浙江大学地球科学系,浙江 杭州 310027
  • 出版日期:2015-04-08
  • 基金资助:
    国家自然科学基金项目“高污染区大气冰核活化参数化方法及对强降水影响的研究”(编号:41405006);中国气象科学研究院基本业务专项“冰核对强降水启动和强度的研究”(编号:2014R016)资助

A Study of the Effects of Ice Nuclei on Cloud Microphysical Properties and Precipitation

Jinfang Yin 1( ), Donghai Wang 1, Huangbin Xu 2, Guoqing Zhai 3, Xiaoling Jiang 1   

  1. 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    2. Beijing Institute of Applied Meteorology, Beijing 100081
    3. Department of Earth Science, Zhejiang University, Hangzhou 310027, China
  • Online:2015-04-08 Published:2015-03-20

系统回顾了冰核对云和降水影响的研究进展,详细分析了冰核对云的宏微观特征、对流系统结构和强度、辐射、雷电、降水量和降水强度的影响途径,并从云微物理过程的角度解释了其影响机制。得到如下结论:①通常情况下,冰核浓度增加,冰晶浓度增大,云滴浓度减小,云的生命史延长;②对于发展阶段的对流云,冰核在温度较高的过冷区活化使潜热在中低层提早释放,增加了对流系统中层不稳定能量,促进了对流系统的发展;③卷云中冰核浓度的增加,改变了冰相水物质与液相水物质的比例;削弱或抑制了卷云中同质核化,增大了卷云中冰晶粒子的平均半径;④冰核浓度的增加,能够使到达地气系统的净辐射增加;⑤冰核浓度的变化能够引起雷电活动发生频次和强度的变化;⑥冰核浓度增加,引起降水量的变化不确定,即降水量增加、减少或者变化不显著的情况都可能存在。这些结果为改进数值模式中冰核活化参数化方法提供指导,从而提高数值模式对云和降水的预报能力;同时为人工影响天气选择合适的人工催化剂和撒播时机提供参考。

An overview of the progresses in the effects of Ice Nuclei (IN) on cloud microphysical properties and precipitation was made in this study. Detailed analysis of the effects of IN on cloud macro- and micro-physical characteristics, convective system, lighting, precipitation intensity and amount was accomplished, and explanations were proposed for those effects in view of the cloud microphysical processes of IN related. The results show that: ①in general, increasing IN leads to the increasing of ice crystal number concentration, reducing of cloud droplet number concentration, and extending of cloud lifetime; ②increase in IN concentration in developing convective cloud causes early release of latent heat at sub-cooling region at middle level cloud faction, which enhances instability energy in middle level clouds and thus promotes the development of convective system; ③the ratio of ice water content and liquid water content is altered and the homogeneous freezing process is reduced or suppressed due to increasing IN concentration in cirrus cloud, but has a significant contribution to the mean ice crystal size; ④as IN concentration increases, the earth-atmosphere system net radiative forcing increases; ⑤both lightning frequency and intensity can be modified by altering IN concentration in cloud; and ⑥the effect of increaing IN concentration on rainfall amount is indefinite, that is, increasing IN concentration can lead to increase, decrease, little change of the total amount of rainfall.

中图分类号: 

图1 冰核对云的属性和大气活动影响 箭头向上表示增加(强),箭头向下表示减少(弱)
Fig. 1 A flowchart showing the effects of ice nuclei on cloud microphysical properties The upward arrows represent the promotion for cloud microphysical processes with the increasing of ice nuclei concentration, while the downward arrows show opposite effects
图2 增加冰核浓度对降水量的影响 斜线上方绿色区域表示随着冰核浓度的增加,降水量减少;斜线下方橙色区域表示随着冰核浓度的增加,降水量增加;斜线之间蓝色区域表示冰核浓度变化对降水的影响不显著
Fig. 2 A flowchart showing the effects of increasing ice nuclei concentration on precipitation The light green zone above the top thick black oblique line represents that an increasing ice nuclei concentration leads to a decreasing in amount of precipitation, while an increasing ice nuclei concentration promoting precipitation are marked in the yellow color zone, and an increasing ice nuclei concentration having little influence on precipitation are located between the two black oblique lines
[1] Rogers R R. A Short Course in Cloud Physics[M]. Beijing: Meteorological Press, 1983: 115.
[罗杰斯. 云物理简明教程[M].北京:气象出版社,1983: 115.]
[2] Teller A, Xue L, Levin Z. The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation[J]. Atmospheric Chemistry and Physics, 2012, 12(19): 9 303-9 320.
[3] Gettelman A, Liu X, Barahona D, et al. Climate impacts of ice nucleation[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D20201, doi: 10.1029/2012JD017950.
[4] Li Z, Xue H, Yang F. A modeling study of ice formation affected by aerosols[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(19): 213-217.
[5] Zeng X, Tao W K, Zhang M, et al. An indirect effect of ice nuclei on atmospheric radiation[J]. Journal of the Atmospheric Sciences, 2009, 66(1): 41-61.
[6] Zeng X, Tao W K, Zhang M, et al. A contribution by ice nuclei to global warming[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135: 1 614-1 629.
[7] Xie S, Liu X, Zhao C, et al. Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization[J]. Journal of Climate, 2013, 26(16): 5981-5999.
[8] Seifert A, Köhler C, Beheng K D. Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model[J]. Atmospheric Chemistry and Physics, 2012, 12(2): 709-725.
[9] Stevens B, Feingold G. Untangling aerosol effects on clouds and precipitation in a buffered system[J]. Nature, 2009, 461(7 264): 607-613.
[96] [黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.]
[97] Gao Tao, Xie Li'an. Study on progress of the trends and physical causes of extreme precipitation in china during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589.
[高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.]
[98] Yin Jinfang, Wang Donghai, Zhai Guoqing. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China[J]. Advances in Earth Science, 2014, 29(2): 238-249.
[尹金方, 王东海, 翟国庆. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J]. 地球科学进展, 2014, 29(2): 238-249.]
[99] Pan Liujie, Zhang Hongfang, Wang Jianpeng. Progress on verification methods of numerical weather prediction[J]. Advances in Earth Science, 2014, 29(3): 327-335.
[潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.]
[10] Ekman A M L, Engström A, Wang C. The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(627): 1 439-1 452.
[11] Gong W, Min Q, Li R, et al. Detailed cloud resolving model simulations of the impacts of Saharan air layer dust on tropical deep convection —Part 1: Dust acts as ice nuclei[J]. Atmospheric Chemistry and Physics Discuss, 2010, 10(5): 12 907-12 952.
[12] Jin Y, Doyle J D, Zhao Q, et al. The Impact of Ice Nuclei Concentration on Hurricane Modeling[Z]. NRL Review: Featured Research,2010: 123-129.
[13] Mason B J, Ludlam F H. The microphysics of clouds[J]. Reports on Progress in Physics, 1951, 14(1): 147.
[14] DeMott P J, Möhler O, Stetzer O, et al. Resurgence in ice nuclei measurement research[J]. Bulletin of the American Meteorological Society, 2011, 92: 1 623-1 635.
[15] Hoose C, Möhler O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments[J]. Atmospheric Chemistry and Physics, 2012, 12(20): 9 817-9 854.
[16] López M L, Ávila E E. Measurements of natural deposition ice nuclei in Córdoba, Argentina[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 3 111-3 119.
[17] Prenni A J, Demott P J, Rogers D C, et al. Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds[J]. Tellus B, 2009, 61(2): 436-448.
[18] Guo Shichang,Li Huijing,Li Yanwei, et al. Numerical simulation of a stratiform cloud precipitation enhancement[J]. Journal of Yunnan University, 2011, 33(1): 60-65.
[郭世昌, 李慧晶, 李艳伟, 等. 一次层状云人工增雨过程的数值模拟研究[J]. 云南大学学报:自然科学版, 2011, 33(1): 60-65.]
[19] Fang Wen, Zheng Guoguang, He Guanfang. Simulation study on the precipitation and seeding process of convective-cloud in Qinghai with a 3D cloud model[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(6): 763-769.
[房文, 郑国光, 何观芳. 青海秋季对流云降水及催化过程数值模拟研究[J]. 南京气象学院学报, 2005, 28(6): 763-769.]
[20] Dong Pengjie, Kang Yuxia, Liu Jianzhong. A response analysis of the artificial rain dissipaton on the opening ceremony of the Beijing Olympic Games[J]. Meteorological Monthly, 2008, 34(Suppl.): 141-145.
[董鹏捷, 康玉霞, 刘建忠. 北京2008奥运开幕式日消(减)雨过程降水响应分析[J]. 气象, 2008, 34(增刊): 141-145.]
[21] Wang Jia, Zhi Xiefei, Bai Kawa, et al. Numerical simulation of an artificial rain dispersal experiment and analysis of its physical process[J]. Transactions of Atmospheric Sciences, 2010, 33(4): 460-468.
[王佳, 智协飞, 白卡娃, 等. 一次人工消雨试验数值模拟及物理过程分析[J]. 大气科学学报, 2010, 33(4): 460-468.]
[22] Bigg E K. A new technique for counting ice-forming nuclei in aerosols[J]. Tellus, 1957, 9(3): 394-400.
[23] Isono K, Komabayasi M, Ono A. The nature and the origin of ice nuclei in the atmosphere[J]. Journal of the Meteorological Society of Japan, 1959, 37: 211-233.
[24] Rosinski J, Langer G, Nagamoto C T, et al. Natural ice-forming nuclei in severe convective storms[J]. Journal of the Atmospheric Sciences, 1971, 28(3): 391-401.
[25] Bigg E K, Miles G T. The results of large-scale measurements of natural ice nuclei[J]. Journal of the Atmospheric Sciences, 1964, 21(4): 396-403.
[26] Fletcher N H. The Physics of Rain Clouds[D]. London: Cambridge University Press, 1962: 386.
[27] Cooper W A. A method of detecting contact ice nuclei using filter samles[C]//Eighth International Conference on Cloud Physics. France: Clermont-Ferrand, 1980:665-668.
[28] Meyers M P, DeMott P J, Cotton W R. New primary ice-nucleation parameterizations in an explicit cloud model[J]. Journal of Applied Meteorology, 1992, 31(7): 708-721.
[29] Phillips V T J, Demott P J, Andronache C, et al. Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations[J]. Journal of the Atmospheric Sciences, 2012, 70(2): 378-409.
[30] Prenni A J, DeMott P J, Kreidenweis S M,et al. Can ice-nucleating aerosols affect arctic seasonal climate?[J]. Bulletin of the American Meteorological Society, 2007, 88(4): 541-550.
[31] Bergeron T. On the physics of cloud and precipitation[C]//Proceeding 5th Assembly2, U. G. G. I. Lisbon, 1935:156.
[32] Li J, Mao J, Hu Z, et al. Numerical analysis of effects of atmospheric ice nuclei concentrations on radiant properties of cold clouds[J]. Acta Meteorologica Sinica, 2005, 19(1): 102-111.
[33] Tan Yongbo, Yang Yi, Shi Zheng, et al. Numerical simulation research of the effect of ice nucleation on thundercloud microphysical process and electrification[J]. Chinese Journal of the Atmospheric Sciences, 2015, doi: 10.3878/j.issn.1006-9895.1405.13330.
[谭涌波, 杨忆, 师正, 等. 冰晶核化对雷暴云微物理过程和起电影响的数值模拟研究[J]. 大气科学, 2015, doi: 10.3878/j.issn.1006-9895.1405.13330.]
[34] Rosinski J. A possible role of ice-forming nuclei in rain formation[J]. Journal of Applied Meteorology, 1967, 6(6): 1 062-1 065.
[35] Morrison H, Shupe M D, Pinto J O, et al. Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds[J]. Geophysical Research Letters, 2005, 32(18): L18801, doi: 10.1029/2005GL023614.
[36] Phillips V T J, Donner L J, Garner S T. Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics[J]. Journal of the Atmospheric Sciences, 2007, 64(3): 738-761.
[37] Jensen E J, Diskin G, Lawson R P, et al. Ice nucleation and dehydration in the tropical tropopause layer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2 041-2 046.
[38] Harrington J Y, Olsson P Q. On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D21): 27 473-27 484, doi: 10.1029/2000JD000236.
[39] Isono K, Tanaka T. Sudden increase of ice nucleus concentration associated with thunderstorm[J]. Journal of the Meteorological Society of Japan, 1966, 44(5): 255-259.
[40] Bowen E G. January freezing nucleus measurement[J]. Australian Journal of Physics, 1956, 9: 552-555.
[41] Langer G, Morgan G, Nagamoto C T, et al. Generation of ice nuclei in the surface outflow of thunderstorms in northeast Colorado[J]. Journal of the Atmospheric Sciences, 1979, 36(12): 2 484-2 494.
[42] Fan J, Comstock J M, Ovchinnikov M. The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer[J]. Environmental Research Letters, 2010, 5(4), doi: 10.1088/1748-9326/5/4/044005.
[43] He Hongrang, Wei Shaoyuan, Liu Xiaoming. The numerical test of initial ice nuclei concentratiion effect on cold cloud convectional precipitation[J]. Cientia Meteorologica Sinica, 1999, 19(2):42-48.
[何宏让, 魏绍远, 刘晓明. 初始冰核浓度对冷云对流性降水影响的数值试验[J]. 气象科学, 1999, 19(2): 42-48.]
[44] Lin M, Tao J, Chan C Y, et al. Regression analyses between recent air quality and visibility changes in megacities at four haze regions in China[J]. Aerosol and Air Quality Research, 2012, 12: 1 049-1 061.
[45] Bigg E K. Geographical differences in concentrations of ice nuclei[J]. Monthly Weather Review, 1964, 92(7): 355-356.
[46] Kärcher B. Cirrus clouds in the tropical tropopause layer: Role of heterogeneous ice nuclei[J]. Geophysical Research Letters, 2004, 31(12): L12101, doi: 10.1029/2004GL019774.
[47] Hendricks J, Kärcher B, Lohmann U. Effects of ice nuclei on cirrus clouds in a global climate model[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D18): D18206, doi: 10.1029/2010jd015302.
[48] Spice A, Johnson D W, Brown P R A,et al. Primary ice nucleation in orographic cirrus clouds: A numerical simulation of the microphysics[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(557): 1637-1667.
[49] Kärcher B. Cirrus clouds in the tropical tropopause layer: Role of heterogeneous ice nuclei[J]. Geophysical Research Letters, 2004, 31(12): L12101, doi: 10.1029/2004GL019774.
[50] Kuebbeler M, Lohmann U, Hendricks J, et al. Dust ice nuclei effects on cirrus clouds[J]. Atmospheric Chemistry and Physics, 2014, 14(6): 3 027-3 046.
[51] Yun Y, Penner J E. An evaluation of the potential radiative forcing and climatic impact of marine organic aerosols as heterogeneous ice nuclei[J]. Geophysical Research Letters, 2013, 40(15): 4 121-4 126, doi: 10.1002/grl.50794.
[52] Liu X, Shi X, Zhang K, et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5[J]. Atmospheric Chemistry and Physics, 2012, 12(24): 12 061-12 079.
[53] Li J, Mao J. Influence of atmospheric ice nucleus concentrations on cold cloud radiant properties and cold cloud reflectivity changes in past years[J]. Chinese Science Bulletin, 2006, 51(4): 480-489.
[54] Shen Xinyong, Mei Haixia, Wang Weiguo, et al. Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentration[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 83-99.
[沈新勇, 梅海霞, 王卫国, 等. 双参数微物理方案的冰相过程模拟及冰核数浓度的影响试验[J]. 大气科学, 2015, 39(1): 83-99.]
[55] DeMott P J, Prenni A J, Liu X, et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11 217-11 222.
[56] Zhou Xiuji, Tao Shanchang, Yao Yake. Advanced Atmospheric Physics[M]. Beijing: Meteorological Press, 1991.
[周秀骥, 陶善昌, 姚亚克.高等大气物理学[M]. 北京:气象出版社,1991.]
[57] Gonçalves F L T, Martins J A, Albrecht R I, et al. Effect of bacterial ice nuclei on the frequency and intensity of lightning activity inferred by the BRAMS model[J]. Atmospheric Chemistry and Physics,2012, 12(13): 5 677-5 689.
[58] Sherwood S C, Phillips V T J, Wettlaufer J S. Small ice crystals and the climatology of lightning[J]. Geophysical Research Letters, 2006, 33(5): L05804, doi: 10.1029/2005GL025242.
[59] Lal D M, Ghude S D, Singh J, et al. Relationship between size of cloud ice and lightning in the tropics[J]. Advances in Meteorology, 2014, doi: 10.1155/2014/471864.
[60] Deierling W, Petersen W A, Latham J, et al. The relationship between lightning activity and ice fluxes in thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D15): D15210, doi: 10.1029/2007JD009700.
[61] Bigg E K. Long-term trends in ice nucleus concentrations[J]. Atmospheric Research, 1990, 25(5): 409-415.
[62] Choi Y S, Ho C H, Kim J, et al. The impact of aerosols on the summer rainfall frequency in China[J]. Journal of Applied Meteorology and Climatology, 2008, 47(6): 1 802-1 813.
[63] Lohmann U, Hoose C. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds[J]. Atmospheric Chemistry and Physics, 2009, 9(22): 8917-8934.
[64] Muhlbauer A, Lohmann U. Sensitivity studies of aerosol-cloud interactions in mixed-phase orographic precipitation[J]. Journal of the Atmospheric Sciences, 2009, 66(9): 2 517-2 538.
[65] Avramov A, Harrington J Y. Influence of parameterized ice habit on simulated mixed phase Arctic clouds[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D3): D03205, doi: 10.1029/2009JD012108.
[66] Fan J, Leung L R, DeMott P J,et al. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust[J]. Atmospheric Chemistry and Physics, 2014, 14(1): 81-101.
[67] Lebo Z J, Seinfeld J H. Theoretical basis for convective invigoration due to increased aerosol concentration[J]. Atmospheric Chemistry and Physics, 2011, 11(11): 5 407-5 429.
[68] Teller A, Levin Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model[J]. Atmospheric Chemistry and Physics, 2006, 6(1): 67-80.
[69] van den Heever S C, Carrió G G, Cotton W R, et al. Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations[J]. Journal of the Atmospheric Sciences, 2006, 63(7): 1 752-1 775.
[70] Sesartic A, Lohmann U, Storelvmo T. Modelling the impact of fungal spore ice nuclei on clouds and precipitation[J]. Environmental Research Letters, 2013, 8(1): 014029, doi:10.1088/1748-9326/8/1/014029.
[71] Wang Xuelin, Gu Shufang, Yu Yong, et al. Two case studies of characteristics of rains and clouds over Jianghai cyclone and the composite analysis of artificial seeding effectiveness[J]. Quarterly Journal of Applied Meteorology, 2001, 12(Suppl.): 48-57.
[汪学林, 谷淑芳, 于勇, 等. 两次江淮气旋的云雨特征及其人工播云效果的综合分析[J]. 应用气象学报, 2001, 12(增刊): 48-57.]
[72] Zhao Zhen, Lei Hengchi. Numerical simulation of precipitation enhancement by stratiform cloud seeding using a mesoscale model[J]. Climatic and Environmental Research, 2012, 17(6): 779-788.
[赵震, 雷恒池. 层状云系催化增雨的中尺度模拟研究[J]. 气候与环境研究, 2012, 17(6): 779-788.]
[73] Li Xingyu, Hong Yanchao. The improvement of 3D hail cloud model and case simulation[J]. Acta Meteorologica Sinica, 2005, 63(6): 874-888.
[李兴宇, 洪延超. 三维冰雹云数值催化模式改进与个例模拟研究[J]. 气象学报, 2005, 63(6): 874-888.]
[74] Chen Li, Yin Yan, Yang Jun, et al. Effects of sand dust particles on cloud and precipitation: A numerical study[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(5): 590-600.
[陈丽, 银燕, 杨军, 等. 沙尘气溶胶对云和降水影响的模拟研究[J]. 南京气象学院学报, 2007, 30(5): 590-600.]
[75] Xiao Hui, Yang Huiling, Hong Yanchao, et al. Numerical simulation of the impacts of ice nucleus spectra on cloud seeding effects in convective storm clouds[J]. Climatic and Environmental Research,2012, 17(6): 833-847.
[肖辉, 杨慧玲, 洪延超, 等. 大气冰核谱分布对对流风暴云人工催化影响的数值模拟研究[J]. 气候与环境研究, 2012, 17(6): 833-847.]
[76] He Guanfang, Hu Zhijin, Li Shuri. Numerical simulation of rain enhancement experimention in northwestern Hubei Province of China[J]. Quarterly Journal of Applied Meteorology, 2001, 12(Suppl.): 96-106.
[何观芳, 胡志晋, 李淑日. 鄂西北对流云及其人工催化的三维数值模拟个例研究[J]. 应用气象学报, 2001, 12(增刊): 96-106.]
[77] Jiang H, Xue H, Teller A, et al. Aerosol effects on the lifetime of shallow cumulus[J]. Geophysical Research Letters, 2006, 33(14): L14806, doi: 10.1029/2006GL026024.
[78] Khain A P, BenMoshe N, Pokrovsky A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification[J]. Journal of the Atmospheric Sciences, 2008, 65(6): 1 721-1 748.
[79] Lohmann U. A glaciation indirect aerosol effect caused by soot aerosols[J]. Geophysical Research Letters, 2002, 29(4), doi: 10.1029/2001GL014357.
[80]Hoose C, Lohmann U, Stier P, et al. Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07210, doi: 10.1029/2007JD009251.
[81] Clark P D, Choularton T W, Brown P R A,et al. Numerical modelling of mixed-phase frontal clouds observed during the CWVC project[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(608): 1 677-1 693.
[82] Morrison H, Pinto J O, Curry J A, et al. Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D5): D05203, doi: 10.1029/2007JD008729.
[83] Yin Y, Chen L. The effects of heating by transported dust layers on cloud and precipitation: A numerical study[J]. Atmospheric Chemistry and Physics, 2007, 7(13): 3 497-3 505.
[84] Lou Xiaofeng, Sun Jing, Shi Yueqin, et al. Numerical study of the AgI seeding principle for decreasing the convective cloud rainfall[J]. Acta Meteorologica Sinica, 2014, 72(4): 782-793.
[楼小凤, 孙晶, 史月琴, 等. 减弱对流云降水的AgI催化原理的数值模拟研究[J]. 气象学报, 2014, 72(4): 782-793.]
[85] Phillips V T J, Choularton T W, Illingworth A J, et al. Simulations of the glaciation of a frontal mixed-phase cloud with the Explicit Microphysics Model[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(590): 1 351-1 371.
[86] Chang D, Song Y, Liu B. Visibility trends in six megacities in China 1973-2007[J]. Atmospheric Research, 2009, 94(2): 161-167.
[87] Ding Yihui, Liu Yanju. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J].Science in China (Series D), 2014, 44(1): 37-48.
[丁一汇, 柳艳菊. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系[J]. 中国科学:D辑, 2014, 44(1): 37-48.]
[88] Yin Jinfang, Wang Donghai, Zhai Guoqing. An evaluation of ice nuclei characteristics from the long-term measurement data over north China[J]. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48(2): 197-204.
[89] Zhou Deping, Hong Ye, Wang Yangfeng, et al. An observational study of atmospheric ice nuclei concentration in spring and summer in Shenyang[J]. Climatic and Environmental Research,2013,17(6): 719-726.
[周德平, 洪也, 王扬锋, 等. 沈阳春夏季大气冰核浓度的观测研究[J]. 气候与环境研究, 2013, 17(6): 719-726.]
[90] Yin Jinfang, Wang Donghai, Zhai Guoqing. A comparative study of cloud-precipitation microphysical properties between East Asia and other regions[J]. Journal of the Meteorological Society of Japan, 2013, 91(4): 507-526.
[91] Qian Y, Gong D, Fan J, et al. Heavy pollution suppresses light rain in China: Observations and modeling[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7): D00K02, doi: 10.1029/2008JD011575.
[92] Wang Y, Wan Q, Meng W, et al. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China[J]. Atmospheric Chemistry and Physics, 2011, 11(23): 12 421-12 436.
[93] Fan J, Leung L R, Li Z, et al. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D16): D00K36, doi: 10.1029/2011JD016537.
[94] Yang X, Ferrat M, Li Z. New evidence of orographic precipitation suppression by aerosols in central China[J]. Meteorology and Atmospheric Physics, 2013, 119(1/2): 17-29.
[95] Yang Z, Jing J, Anning H, et al. Possible contribution of heavy pollution to the decadal change of rainfall over eastern China during the summer monsoon season[J]. Environmental Research Letters, 2013, 8(4): 044024, doi:10.1088/1748-9326/8/4/044024.
[96] Huang Qiang, Chen Zishen. Regional study on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science, 2014, 29(8): 956-967.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[3] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[4] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征 *[J]. 地球科学进展, 2015, 30(2): 268-275.
[5] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[6] 孟素花,费宇红,张兆吉,雷廷,钱永,李亚松. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.
[7] 王宝鉴,黄玉霞,王劲松,陶健红. 祁连山云和空中水汽资源的季节分布与演变[J]. 地球科学进展, 2006, 21(9): 948-955.
[8] 贾玉连,施雅风,曹建廷,范云崎. 40~30 ka BP期间高湖面稳定存在时青藏高原西南部封闭流域的古降水量研究[J]. 地球科学进展, 2001, 16(3): 346-351.
阅读次数
全文


摘要