地球科学进展 ›› 2020, Vol. 35 ›› Issue (11): 1101 -1112. doi: 10.11867/j.issn.1001-8166.2020.087

综述与评述    下一篇

中国 400 mm等降水量变迁与干湿变化研究进展
高艳红 1( ),许建伟 2,张萌 1,姜凤友 3   
  1. 1.复旦大学 大气与海洋科学系/大气科学研究院,上海 200438
    2.湖南文理学院 资源环境与旅游 学院,湖南 常德 415000
    3.内蒙古呼伦贝尔市气象局,内蒙古 呼伦贝尔 021008
  • 收稿日期:2020-10-26 修回日期:2020-11-07 出版日期:2020-11-10
  • 基金资助:
    中国科学院战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”(XDA2006010202);马克思主义理论研究和建设工程重大项目“中国400毫米等降水量线与西北地区重要战略地位研究”(2020MYB069)

Advances in the Study of the 400 mm Isohyet Migrations and Wetness and Dryness Changes on the Chinese Mainland

Yanhong Gao 1( ),Jianwei Xu 2,Meng Zhang 1,Fengyou Jiang 3   

  1. 1.Institute of Atmospheric Sciences & Department of Atmospheric and Oceanic Sciences,Fudan University,Shanghai 200438,China
    2.College of Resource and Environment,Hunan University of Arts and Science,Changde Hunan 415000,China
    3.Hulunbeier Meteorology Bureau,Hulunbuir Inner Mongolia Autonomous Region 021008,China
  • Received:2020-10-26 Revised:2020-11-07 Online:2020-11-10 Published:2021-01-25
  • About author:Gao Yanhong (1973-), female, Wenshui County, Shanxi Province, Professor. Research areas include land-atmosphere interaction and regional climate change. E-mail: gaoyh@fudan.edu.cn
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences “Pan-Three Pole environmental change and Green Silk Road Construction”(XDA2006010202);The Major Projects for Research and Construction of Marxist Theory "Study on the 400 mm Isohyet and the important strategic position of Northwest China"(2020MYB069)

目前多数全球气候模式的预估结果认为,在变暖背景下,全球水资源会出现“干的地方越干,湿的地方越湿”的变化分布。由于人口社会经济和自然生态等诸多方面的重要性,未来干旱区、半干旱区的干湿变化受到了国际社会的高度关注,中国干旱半干旱区水资源安全问题也引起党中央、国务院的高度重视。总结了现阶段和未来气候变化情景下,400 mm等降水量线、干燥度指数和帕尔默干旱强度指数等几种干湿指标表征的中国干湿界线变迁以及干旱、半干旱区的面积变化,指出了目前干湿变化研究的主要结论和尚待解决的问题,并提出了未来研究展望。研究表明中国干湿界线及其变化具有鲜明的分段特征,中段比较稳定,东段波动剧烈,西段变化表现出强烈的数据依赖性,包含更多观测数据的资料显示西段稳步西移北抬。干湿变化研究结果也体现出强烈的干旱指标依赖性,在干湿过渡带尤其如此,使用潜在蒸散发的干旱指标对温度变化表现出强烈的依赖性。采用融合更多观测数据的高分辨率资料、耦合先进陆面过程模式的高分辨率动力降尺度结果,以及基于实际蒸散发的干湿分区指标是促进中国西部干湿变化研究的有效途径。

Under the background of global warming, the global water resources were projected to be a distribution of "the rich get richer, the poor get poorer". The dryness and wetness changes in arid and semi-arid areas have attracted great attention of the international community. Based on the present and future climate change scenarios, this study summarized the changes of dryness and wetness boundary and the area of arid and semi-arid areas in China characterized by 400 mm Isohyet, aridity index and Palmer drought index. The main conclusions and problems of dryness and wetness changes in recent decades and future projections were reviewed and summarized. The results show that the dry and wet boundaries and their changes in China have distinct piecewise characteristics; the middle section is relatively stable; the eastern section fluctuates violently; and the western section changes show strong data dependence. The data with more observed ones show that the western section moves steadily westward and northward. The dryness and wetness changes of different drought index analysis are not in line, especially in dry and wet transition zone. The drought index using potential evapotranspiration shows a strong dependence on temperature change. It is suggested that we should use as much observation data as possible, drought index including actual evapotranspiration, advanced land surface processes model to accurately simulate actual evapotranspiration, and high resolution dynamic downscaling results coupled with advanced land surface processes model, to study dryness and wetness changes in China.

中图分类号: 

图1 19612019年中国平均年降水量的空间分布及400 mm等降水量线的位置
Fig.1 Distributions of the annual mean precipitation and locations of 400 mm isohyet averaged over 1961-2019 in the mainland of China
图2 19612019年中国平均降水量和不同年代400 mm等降水量线位置的变化
Fig.2 Distributions of the annual mean precipitation and locations of decadal mean 400 mm isohyet in 1961-2019 in the mainland of China
图3 中国干旱区(a~c)和半干旱区(d~f)面积占全国面积比例的年际变化
Fig.3 Linear trends and annual variability of the percentage areas of the (a~c) arid and (d~f) semi-arid regions in the mainland of China using
图4 CMIP6 18个模式集合平均预估的SSP126a, d, g , j)、SSP245b, e, h, k)、SSP585c, f, i, l)情景下20152100年中国400 mm等降水量线加权平均经度的年际变化
(a~c)全线;(d~f)西段;(g~i)中段;(j~l)东段; 阴影边界表示18个模式的最大值和最小值
Fig.4 Annual variations of the weighted averaged longitudes of the 400 mm isohyet in the mainland of China under scenarios of SSP126a, d, g , j), SSP245b, e, h, k), SSP585c, f, i, lfor 18-model ensemble in CMIP6 from 2015 to 2100
(a~c) The whole 400 mm isohyet line; (d~f) To the west of 93°E; (g~i) 93°~111°E; (j~l) To the east of 111°E of the 400 mm isohyet line;The upper and bottom boundary of the gray shadow represents the maximum and minimum among 18 models
图5 CMIP618个模式集合平均预估的SSP126a, d, g , j)、SSP245b, e, h, k)、SSP585c, f, i, l)情景下20152100年中国400 mm等降水量线加权平均纬度的年际变化
(a~c)全线;(d~f)西段;(g~i)中段;(j~l)东段; 阴影边界表示18个模式的最大值和最小值
Fig.5 Annual variations of the weighted averaged latitudes of the 400 mm isohyet in the mainland of China under scenarios of SSP126a, d, g , j), SSP245b, e, h, k), SSP585c, f, i, lfor 18-model ensemble in CMIP6 from 2015 to 2100
(a~c) The whole 400 mm isohyet line; (d~f) To the west of 93°E; (g~i) 93~111°E; (j~l) To the east of 111°E of the 400 mm isohyet line;The upper and bottom boundary of the gray shadow represents the maximum and minimum among 18 models
1 Held Isaac M, Soden Brian J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21): 5 686-5 699.
2 Huang Jianping, Yu Haipeng, Guan Xiaodan, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 1-7.
3 Wang Jingsong, Chen Fahu, Jin Liya, et al. Relationships between climatic anomaly in arid region of Centre-East Asia and sea level pressure anomaly in the last 100 years[J]. Plateau Meteorology, 2008, 27(1): 84-95.
王劲松, 陈发虎, 靳立亚, 等. 近100年来中东亚干旱区气候异常与海平面气压异常的关系[J]. 高原气象, 2008, 27(1): 84-95.
4 Liu Jie. Study on Spatial and Temporal Variation of the Boundary and Area of the Semi-Arid Region in Northern China Over the Past 60 Years[D]. Xi'an: Northwest University, 2019.
刘洁. 近60年来中国北方半干旱区界线与范围时空变化特征研究[D]. 西安: 西北大学, 2019.
5 Tan Yunjuan. Alternation of Dry and Wet Climate Zone and Its Cause Analysis in China in Last 50 Years[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
谭云娟. 近50年来我国气候干湿区的变化规律及其成因分析[D]. 南京: 南京信息工程大学, 2016.
6 Zhang Fangmin, Sheng Shuanghe. A study on dry/wet conditions and changes of dry/wet climate boundary in China[J]. Transactions of Atmospheric Sciences, 2008, 31(4): 574-579.
张方敏, 申双和. 中国干湿状况和干湿气候界限变化研究[J]. 南京气象学院学报, 2008, 31(4): 574-579.
7 Zhang Cunjie, Liao Yaoming, Duan Juqi, et al. The progresses of dry-wet climate divisional research in China[J]. Climate Change Research, 2016, 12(4): 261-267.
张存杰, 廖要明, 段居琦, 等. 我国干湿气候区划研究进展[J]. 气候变化研究进展, 2016, 12(4): 261-267.
8 Ma Zhuguo, Huang Gang, Gan Wenqiang, et al. Multi-scale temporal characteristics of the dryness/wetness over Northern China during the last century[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(5): 671-681.
马柱国, 黄刚, 甘文强, 等. 近代中国北方干湿变化趋势的多时段特征[J]. 大气科学, 2005, 29(5): 671-681.
9 Yin Yunhe, Ma Danyang, Wu Shaohong. Enlargement of the semi-arid region in China from 1961 to 2010[J]. Climate Dynamics, 2018, 52(1/2): 509-521.
10 Gao Yanhong, Li Xia, Ruby L L, et al. Aridity changes in the Tibetan Plateau in a warming climate[J]. Environmental Research Letters, 2015, 10(3): 1-12.
11 Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948,38(1): 55-94.
12 Richard A G, Luis P S, Dirk Raes, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[J]. FAO, 1998, 300(9): D5109.
13 Palmer Wayne C. Meteorological Drought[R].
U.S.department of Commerce Weather Bureau, Washington DC,Research Paper 45, 1965.
14 Trenberth K E, Dai Aiguo, van der Schrier G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2013, 4(1): 17-22.
15 Dai Aiguo. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011,2(1): 45-65.
16 Jiang Jiang, Jiang Dabang, Lin Yihua. Changes and projection of dry/wet areas over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 43-56.
姜江, 姜大膀, 林一骅. 中国干湿区变化与预估[J]. 大气科学, 2017, 41(1): 43-56.
17 Liu Ke, Jiang Dabang. Projected changes in the dry/wet climate of China under the RCP4.5 Scenario[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 489-502.
刘珂,姜大膀. RCP4.5情景下中国未来干湿变化预估[J]. 大气科学, 2015, 39(3): 489-502.
18 Li Xueping, Shi Xingmin, Wang Aruna. The interdecadal spatial changes of typical rainfall contours in China[J]. Journal of Desert Research, 2016, 36(1): 232-238.
李雪萍, 史兴民, 王阿如娜. 中国典型等降水量线年代际空间演变[J]. 中国沙漠, 2016, 36(1): 232-238.
19 Ma Chao, Ma Wensi, Wang Zijian, et al. Migration and its inducements of 400 mm precipitation contour in the mainland China from 1951 to 2012 year[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(4): 520-525.
马超, 马雯思, 王孜健,等. 中国大陆1951—2012年400 mm等降水量线的迁移及诱因[J]. 河南理工大学学报: 自然科学版, 2016, 35(4): 520-525.
20 Wang Hao, Yan Denghua, Wang Jianhua, et al. A study of the spatial shift of 400 mm-rainfall contours in the yellow river basin during recent 50 years[J]. Advances in Earth Science, 2005, 20(6): 649-655.
王浩, 严登华, 王建华, 等. 近50年来黄河流域400 mm等雨量线空间变化研究[J]. 地球科学进展, 2005, 20(6): 649-655.
21 Zhao Yufei, Zhu Jiang, Xu Yan. Establishment and assessment of the grid precipitation datasets in China for recent 50 years[J]. Journal of the Meteorological Sciences, 2014, 34(4): 414-420.
赵煜飞, 朱江,许艳. 近50a中国降水格点数据集的建立及质量评估[J]. 气象科学, 2014, 34(4): 414-420.
22 Udo Schneider, Andreas Becker, Peter Finger, et al. GPCC Full Data Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on Gts-Based and Historical Data[DS].2018. DOI: 10.5676/DWD_GPCC/FD_M_V2018_050.
doi: 10.5676/DWD_GPCC/FD_M_V2018_050    
23 Ian Harris, Timothy Osborn, Phil Jones, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Science Data, 2020, 7(1): 1-18.
24 Li Zongmei, Zhang Zengxiang, Zhao Xiaoli, et al. Changes of distribution of arid and humid areas in China[J]. Earth and Environment, 2017, 45(4): 420-433.
李宗梅, 张增祥, 赵晓丽, 等. 全国干湿分布区动态变化研究[J]. 地球与环境, 2017, 45(4): 420-433.
25 Ma Zhuguo, Fu Congbin. Decadal variations of arid and semi-arid boundary in China[J]. Chinese Journal of Geophysics, 2005, 48(3): 519-525.
马柱国, 符淙斌. 中国干旱和半干旱带的10年际演变特征[J]. 地球物理学报, 2005, 48(3): 519-525.
26 Liu Bo, Ma Zhuguo. Area change of dry and wet regions in China in the past 45 years[J]. Arid Land Geography, 2007(1): 7-15.
刘波, 马柱国. 过去45年中国干湿气候区域变化特征[J]. 干旱区地理, 2007(1): 7-15.
27 Ma Zhuguo, Fu Congbin. The basic facts of aridification for northern China in 1951-2004[J]. Chinese Science Bulletin, 2006, 51(20): 2 429-2 439.
马柱国, 符淙斌. 1951—2004年中国北方干旱化的基本事实[J]. 科学通报, 2006, 51(20): 2 429-2 439.
28 Li Yue, Huang Jianping, Ji Mingxia, et al. Dryland expansion in northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015(32): 870-876.
29 Hu qi, Dong Bei, Pan Xuebiao, et al. Spatiotemporal variation and causes analysis of dry-wet climate over period of 1961-2014 in China[J]. Chinese Society of Agricultural Engineering, 2017, 33(6): 124-132.
胡琦, 董蓓, 潘学标, 等. 1961-2014年中国干湿气候时空变化特征及成因分析[J]. 农业工程学报, 2017, 33(6): 124-132.
30 Yang Jianping, Ding Yongjian, Chen Rensheng, et al. The interdecadal fluctuation of dry and wet climate boundaries in China recent 50 years[J]. Acta Geographica Sinica, 2002, 57(6): 655-661.
杨建平, 丁永建, 陈仁升, 等. 近50年来中国干湿气候界线的10年际波动[J]. 地理学报, 2002, 57(6): 655-661.
31 Yang Jianping, Ding Yongjian, Chen Rensheng, et al. Change of dry and wet climate boundary in China in the recent 50 years[J]. Acta Meteorologica Sinica, 2003, 61(3): 364-373.
杨建平, 丁永建, 陈仁升, 等. 近50年中国干湿气候界线波动及其成因初探[J]. 气象学报, 2003, 61(3): 364-373.
32 Yang Jianping, Ding Yongjian, Chen Rensheng, et al. Spatial change of dry and wet climate boundary in China in the recent 50 years[J]. Journal of Glaciology and Geocryology, 2004, 24(6): 731-736.
杨建平, 丁永建, 陈仁升, 等. 50 a来我国干湿气候界线的空间变化分析[J]. 冰川冻土, 2004,24(6): 731-736.
33 Huang Xiaoyan, Zhang Mingjun, Jia Wenxiong, et al. Variations of surface humidity and its influential factors in Northwest China[J]. Advances in Water Science, 2011(2): 3-11.
黄小燕, 张明军, 贾文雄, 等. 中国西北地区地表干湿变化及影响因素[J]. 水科学进展, 2011(2): 3-11.
34 Huang Liang, Gao Ping, Xie Xiaoping, et al. Variation laws of wet and dry climatic zones in China under global warming[J]. Journal of the Meteorological Sciences, 2013, 33(5): 570-576.
黄亮, 高苹, 谢小萍, 等. 全球增暖背景下中国干湿气候带变化规律研究[J]. 气象科学, 2013, 33(5): 570-576.
35 Yuan Quanzhi, Wu Shaohong, Dai Erfu, et al. Spatio-temporal variation of the wet-dry conditions from 1961 to 2015 in China[J]. Scientia Sinica: Terrae, 2017,47(11): 1 339-1 348.
苑全治, 吴绍洪, 戴尔阜,等. 1961—2015年中国气候干湿状况的时空分异[J]. 中国科学: 地球科学, 2017, 47(11): 1 339-1 348.
36 Liu Laibao, Wang Yang, You Nanshan, et al. Changes in aridity and its driving factors in China during 1961-2016[J]. International Journal of Climatology, 2019, 39(1): 50-60.
37 Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world's water towers[J]. Nature, 2020, 577(7 790): 364-369.
38 Yao Tandong, Lonnie Thompson, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
39 Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised first and second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(9): 1 402-1 414.
孙美平, 刘时银, 姚晓军, 等. 近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J]. 地理学报, 2015, 70(9): 1 402-1 414.
40 Dirk Scherler, Bodo Bookhagen, Strecker Manfred R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4(3): 156-159.
41 Bolch T, Kulkarni A, Kaeaeb A, et al. The state and fate of himalayan glaciers[J]. Science, 2012, 336(6 079): 310-314.
42 Gao Yanhong, Cuo Lan, Zhang Yongxin. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 2014, 27(5): 1 876-1 893.
43 Gao Yanhong, Cuo Lan, Zhang Yongxin, et al. Changes in moisture flux over the Tibetan Plateau during 1979-2011: Insights from a High-Resolution simulation[J]. Journal of Climate, 2015, 28(10): 4 185-4 197.
44 Gao Yanhong, Chen Fei, Lettenmaier Dennis P, et al. Does elevation-dependent warming hold true above 5000m elevation? Lessons from the Tibetan Plateau[J]. NPJ Climate and Atmospheric Science, 2018, 1: 1-7.
45 Yao Tandong, Xue Yongkang, Chen Deliang, et al. Recent Third Pole's Rapid Warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
46 Zhang Guoqing, Yao Tandong, Shilong Piao, et al. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades[J]. Geophysical Research Letters, 2017, 44(1): 252-260.
47 Zhang Guoqing, Yao Tandong, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5 550-5 560.
48 Wang Qiuyu, Yi Shuang, Sun Wenke. The changing pattern of lake and its contribution to increased mass in the Tibetan Plateau derived from GRACE and ICESat data[J]. Geophysical Journal International, 2016, 207(1): 528-541.
49 Li Ruiqing, Gao Yanhong, Chen Deliang, et al. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades[J]. Sciences in Cold and Arid Regions, 2018, 10(6): 0482-0492.
50 Kripalani R H, Oh J H, Chaudhari H S. Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4[J]. Theoretical and Applied Climatology, 2006, 87(1/4): 1-28.
51 Liu Yunyin, Li Yi, DingYihui. East Asian summer rainfall projection and uncertainty under a global warming scenario[J]. International Journal of Climatology, 2020, 40(11): 4 828-4 842.
52 Wang Lin, Chen Wen. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078.
53 Cook Benjamin I, Mankin J S, Marvel K, et al. Twenty-First century drought projections in the CMIP6 forcing scenarios[J]. Earth's Future, 2020, 8(6): 1-20.
54 Lv Yanmin, Guo Jianping, Yim Steve Hung-Lam, et al. Towards understanding multi-model precipitation predictions from CMIP5 based on China hourly merged precipitation analysis data[J]. Atmospheric Research, 2020, 231: 104671.
55 Zhang Qiang, Shen Zexi, Xu Chongyu, et al. A new statistical downscaling approach for global evaluation of the CMIP5 precipitation outputs: Model development and application[J]. Science of the Total Environment, 2019, 690: 1 048-1 067.
56 Jiang Dabang, Tian Zhiping, Lang Xianmei. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports[J]. International Journal of Climatology, 2016, 36(3): 1 114-1 133.
57 Jiang Zhihong, Chen Weilin, Song Jie, et al. Projection and evaluation of the precipitation extremes indices over China based on Seven IPCC AR4 coupled Climate Models[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 109-120.
江志红, 陈威霖, 宋洁, 等. 7个IPCCAR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J]. 大气科学, 2009, 33(1): 109-120.
58 Jiang Jiang. The Change of Monsoom and Arid Region in China and Its Projection[D]. Beijing: University of Chinese Academy of Sciences, 2015.
姜江. 中国季风区及干旱区变化与预估[D]. 北京: 中国科学院大学, 2015.
59 Ma Danyang, Yin Yunhe, Wu Shaohong, et al. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario[J]. Acta Geographica Sinica, 2019, 74(5): 857-874.
马丹阳, 尹云鹤, 吴绍洪, 等. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874.
60 Zhao Junfang, Guo Jianping, Xu Jingwen, et al. Trends of Chinese dry-wet condition based on wetness index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 18-24.
赵俊芳, 郭建平, 徐精文, 等. 基于湿润指数的中国干湿状况变化趋势[J]. 农业工程学报, 2010, 26(8): 18-24.
61 Li Mingxing, Ma Zhuguo. Soil moisture-based study of the variability of dry-wet climate and climate zones in China [J]. Chinese Academy of Sciences, 2012,57(28/29): 2 740-2 754.
李明星, 马柱国.中国气候干湿变化及气候带边界演变:以集成土壤湿度为指标[J]. 科学通报, 2012,57(28/29): 2 740-2 754.
62 Li Suyuan, Miao Lijuan, Jiang Zhihong, et al. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099[J]. Advances in Climate Change Research, 2020,11(3):210-217.
63 Gu Lei, Chen Jie, Yin Jiabo, et al. Responses of precipitation and runoff to climate warming and implications for future drought changes in China[J]. Earth's Future, 2020,8(10). DOI:10.1029/2020EF001718.
doi: 10.1029/2020EF001718    
64 Henderson Gina R, Yannick Peings, Furtado Jason C, et al. Snow-atmosphere coupling in the Northern Hemisphere[J]. Nature Climate Change, 2018, 8(11): 954-963.
65 Shi Ying, Gao Xuejie, Wu Jia, et al. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model[J]. Environmental Research Letters, 2011, 6(4):045401.
66 Terzago Silvia, Jvon Hardenberg, Palazzi E, et al. Snowpack changes in the hindu kush-Karakoram-Himalaya from CMIP5 global climate models[J]. Journal of Hydrometeorology, 2014, 15(6): 2 293-2 313.
67 Zhong Ruida, He Yanhu, Chen Xiaohong. Responses of the hydrological regime to variations in meteorological factors under climate change of the Tibetan Plateau[J]. Atmospheric Research, 2018, 214: 296-310.
68 Zhou Botao, Wang Zunya, Shi Ying, et al. Historical and future changes of snowfall events in China under a warming background[J]. Journal of Climate, 2018, 31(15): 5 873-5 889.
69 Shi Yafeng, Liu Shiyin. Projection of China glacier response to global warming in the 21st century[J]. Chinese Science Bulletin, 2000, 45(4): 434-438.
施雅风, 刘时银.中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4): 434-438.
70 Yao Tandong. Dynamic Characteristics of Cryosphere in the Central Tibetan Plateau[M]. Beijing: Geology Press, 2002.
姚檀栋. 青藏高原中部冰冻圈动态特征[M]. 北京: 地质出版社, 2002.
71 Doris Duethmann, Christoph Menz, Jiang Tong, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5). DOI:10.1088/1748-9326/11/5/054024.
doi: 10.1088/1748-9326/11/5/054024    
72 Li Xin, Cheng Guodong. Model of high-altitude permafrost responding to global change[J]. Scientia Sinica: Terrae, 1999, 29(2): 185-192.
李新, 程国栋. 高海拔多年冻土对全球变化的响应模型[J]. 中国科学: 地球科学, 1999, 29(2): 185-192.
73 Zhuotong Nan, Li Shuxun, Cheng Guodong. Projection of permafrost change in the Tibetan Plateau in the next 50 and 100 years[J]. Scientia Sinica: Terrae, 2004, 34(6): 528-534.
南卓铜, 李述训, 程国栋. 未来50与100a青藏高原多年冻土变化情景预测[J]. 中国科学: 地球科学, 2004, 34(6): 528-534.
74 Guo Donglin, Wang Huijun, Li Duo. A projection of permafrost degradation on the Tibetan Plateau during the 21st century[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D05106): 1-15.
75 Gao Yanhong, Vano Julie A, Zhu Chunmei, et al. Evaluating climate change over the Colorado River basin using regional climate models[J]. Journal of Geophysical Research—Atmospheres, 2011, 116: 1-20.
76 Gao Yanhong, Xu Jianwei, Chen Deliang. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 2015, 28(7): 2 823-2 841.
77 Gao Yanhong, Xiao Linhong, Chen Deliang, et al. Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau[J]. Climate Dynamics, 2017, 48(5): 1 705-1 721.
78 Gao Yanhong, Li Kai, Chen Fei, et al. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J]. Journal of Geophysical Research—Atmospheres, 2015, 120(18): 9 258-9 278.
79 Gao Yanyong, Chen Deliang. Modeling of Regional Climate over the Tibetan Plateau[M]. Oxford: Oxford University Press, 2017.
80 Gao Yanhong, Ruby L L, Jr Salathe E P, et al. Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change[J]. Geophysical Research Letters, 2012, 39: 1-5.
81 Gao Yanhong, Xiao Linhong, Chen Deliang, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1 285-1 297.
82 Li Wei, Jiang Zhihong, Xu Jianjun, et al. Extreme precipitation indices over China in CMIP5 models. Part II: Probabilistic projection[J]. Journal of Climate, 2016, 29(24): 8 989-9 004.
83 Xu Ying, Wu Jie, Shi Ying, et al. Change in extreme climate events over China based on CMIP5[J]. Atmospheric and Oceanic Science Letters, 2015, 8(4): 185-192.
84 Gao Yanhong, Chen Fei, Gonzalo Miguez-Macho, et al. Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J]. Climate Dynamics, 2020,55:2 921-2 937.
85 Gao Yanhong, Chen Fei, Jiang Yingsha. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J]. Journal of Hydrometeorology, 2020, 21(7): 1 531-1 548.
[1] 王亚平,黄 耀,张稳. 中国东北三省1960—2005年地表干燥度变化趋势[J]. 地球科学进展, 2008, 23(6): 619-627.
阅读次数
全文


摘要