地球科学进展 ›› 2014, Vol. 29 ›› Issue (5): 559 -568. doi: 10.11867/j.issn.1001-8166.2014.05.0559

上一篇    下一篇

饱和水汽压差的卫星遥感研究综述
张红梅 1, 3( ), 吴炳方 2, *( ), 闫娜娜 2   
  1. 1. 中南大学地球科学与信息物理学院,湖南 长沙 410083
    2. 中国科学院遥感与数字地球研究所,北京 100101
    3. 南昌工程学院水利与生态学院,江西 南昌 330099
  • 出版日期:2014-05-23
  • 通讯作者: 吴炳方 E-mail:zhanghm_06@126.com;wubf@radi.ac.cn
  • 基金资助:
    [HT6SS][ZK(]国家自然科学基金重点项目“干旱区陆表蒸散遥感估算的参数化方法研究”(编号:91025007);全国生态环境十年变化(2000—2010年)遥感调查与评估项目之子课题“北方地区地表温度及蒸散发遥感信息提取”(编号:STSN-01-11)资助

Remote Sensing Estimates of Vapor Pressure Deficit: An Overview

Hongmei Zhang 1, 3( ), Bingfang Wu 2( ), Nana Yan 2   

  1. 1. School of Geosciences and Info-Physics, Central south University, Changsha 410083, China
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
    3. School of Ecology and Hydrodynamic engineering, Nanchang Institute of Technology, Nanchang 330099, China
  • Online:2014-05-23 Published:2014-05-10

饱和水汽压差是许多陆表生态和陆面过程模型中非常重要的输入参数之一,精确估算并获取其时空分布特征是生态、农业遥感领域亟待解决的问题之一。在简要回顾饱和水汽压差的应用和传统获取方法的基础上重点介绍遥感估算饱和水汽压差的数据源和估算方法,即统计方法和解析计算法,并对解析计算法所需关键参数的国内外相关研究进展进行概述,探讨目前遥感估算饱和水汽压差存在的不足,并结合目前遥感技术发展现状和此领域研究存在的问题探讨其发展趋势,展望了联合多源遥感数据进行高时空分辨率的饱和水汽压差遥感估算问题。

Vapor Pressure Deficit (VPD) is an important climatic variable widely used in many ecosystem models to simulate fluxes and states of water and carbon; it plays an important role in fire warning and epidemic disease early warning systems. Accurate estimation of spatio-temporally distributed VPD is critical for ecosystem and climate modeling efforts. In this paper, the available remote sensing datasets for satellitebased VPD estimation are analyzed, the precision and spatial resolution are two important factors for selecting remote sensing data. Then, the principle and advantages of different estimation algorithms are analyzed, which include the regression method and analytic method. The regression method is simple, but requires mass sample data and can not be used in other region before calibration. The analytic method is more complex, but can be used anywhere once established. The near surface air temperature and humidity are two key parameters for estimating VPD, which are usually estimated from the satellite retrieved land surface temperature and total precipitable water vapor. The errors in estimated VPD cloud are further eliminated by improving the accuracy of input remote sensing data and improving estimation algorithms of near surface air temperature and humidity. Finally, the existing problems and the VPD estimation research prospect are discussed. Most research work is limited in clear sky days until now, and VPD estimation under cloudy days is a challenging work, but it is important for many applications. A full VPD map could be achieved by combining several satellite data from different instruments, especially by taking the advantages of optical and microwave remote sensing. The prospects of the satellitebased VPD estimation technologies are presented.

中图分类号: 

表1 全球主要的通量观测研究网络
Table 1 Global main flux observation networks
表2 全球主要的陆表温度和湿度数据集
Table 2 Global main land surface temperature and humidity datasets
产品名 覆盖 时空特性 主要用途 可提供参数
AIRS/AMSU-A/HSB 陆表分析产品 全球 水平分辨率:40.6 km;垂向分辨率:2 km; 时次:2次/天;标称精度:RMS≤1 K 地-气能量交换,大气顶长波辐射 Ts, TPW
MODIS MOD07 全球 水平分辨率:5 km;垂向:15个气压层 臭氧,大气稳定度,大气校正,大气特性研究 Ta, Tdew
Metop IASI 大气廓线 全球 水平分辨率:25 km;垂向:1 km;时次:2次/天;标称精度:RMS≤1 K 天气预报,大气特性研究 Ta, Tdew
NOAA/Metop AVHRR 全球 水平分辨率:1.1 km, 时次:2次/天 气候、水文和生态模型 Ts, TPW
MODIS MOD11 全球 水平分辨率: 1 km;时次:2次/天;8天和月产品:0.5°;标称精度:RMS≤1 K 气候、水循环、水文和生态模型 Ts
MSG SEVIRI 欧洲及周边 水平分辨率:1~3 km;时间分辨率:30 min 陆面过程、植物光合作用 Ts
FY-3A VIRR 全球 水平分辨率:1 km,时次:2次/天 陆面过程 Ts
MODIS MOD05 全球 水平分辨率:近红外1 km, 红外5 km;时次:2次/天;标称精度:RMS≤10% 水循环、大气校正 TPW
GMS VISSR 日本及周边 水平分辨率:5 km;时间分辨率:180 min 天气预报,大气特性 TPW
FY-2 VISSR 中国及周边 水平分辨率:5 km 天气预报 TPW
FY-3A MWHS 全球 水平分辨率:16 km 大气特性研究 TPW
SAGE III 水汽产品 全球南北高纬地区 垂向分辨率:0.5 km; 时间分辨率:30个太阳掩星事件/天 温室气体效应;气候模式论证,天气预报 TPW, q
图1 遥感估算VPD的解析算法流程
Figure 1 Flow work of satellite estimates of near surface VPD
表3 近地表气温遥感反演算法比较
Table 3 Methods for retrieving T a from remote sensing data
[1] Rogers D J, Hay S I, Packer M J. Predicting the distribution of tsetse flies in west Africa using temporal fourier processed meteorogical satellite data[J]. Annals of Tropical Medicine and Parasitology, 1996, 90: 225-241.
[2] Hay S I, Lennon J J. Deriving meteorological variables across Africa for the study and control of vector-borne disease: A comparison of remote sensing and spatial interpolation of climate[J]. Tropical Medicine and International Health, 1999, 4: 58-71.
[3] Green R M, Hay S I. The potential of pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications[J]. Remote Sensing of Enviroment, 2002, 79: 166-175.
[4] Almeida A C, Landsberg J J. Evaluating methods of estimating global radiation and vapor pressure deficitusing a dense network of automatic weather stations in coastal Brazil[J]. Agricultural and Forest Meteorology, 2003, 118: 237-250.
[5] Vrugt J A, Bouten W, Dekker S C. Transpiration dynamics of an Austrian Pine stand and its forest floor: Identifying controlling conditions using artificial neural networks[J]. Advances in Water Resources, 2002, 25: 293-303.
[6] Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London, Series B, 1976, 273: 593-610.
[7] Leonardi C, Guichard S, Bertin N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits[J]. Scientia Horticulturae, 2000, 84: 285-296.
[8] Habermann G, Machado E C, Rodrigues J D, et al. Gas exchange rates at different vapor pressure deficits and water relation of Pera’ Sweet Orange plants with Citrus Variegated Chlorosis(CVC)[J]. Scientia Horticulture, 2003, 98:233-245.
[9] Williams L E, Baeza P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines[J]. American Journal of Enology and Viticulture, 2007, 58:173-181.
[10] Lendzion J, Leuschner C. Growth of European Beech(Fagussylvatica L.) sapling is limited by elevated atmospheric vapour pressure deficits[J]. Forest Ecology and Management, 2008, 256: 648-655.
[11] Zhu Liwei, Zhao Ping, Cai Xi’an, et al. Characteristics of transpiration and canopy stomatal conductance of Schima Superba Plantation and their responses to environmental factors[J]. Journal of Tropical and Subtropical Botany, 2010, 18(6): 599-606.
[朱丽薇, 赵平, 蔡锡安,等. 荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应[J]. 热带亚热带植物学报, 2010, 18(6):599-606.]
[12] Aber J D, Reich P B, Goulden M L. Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis compared with measurements by eddy correlation[J]. Oecologia, 1996, 106: 257-265.
[13] Hashimoto H, Dungan J L, White M A, et al. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data[J]. Remote Sensing of Enviroment, 2008, 112:142-155.
[14] Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2002, 50(2), doi: 10.1029/2011RG000373.
[15] Sahin M, Yildiz B Y, Senkal O, et al. Estimation of the vapour pressure deficit using NOAA-AVHRR data[J]. International Journal of Remote Sensing, 2013, 34(8): 2 714-2 729.
[16] Prince S D, Goetz S J, Dubayah R O, et al. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using advanced very high-resolution radiometer satellite observations: Comparison with field observations[J]. Journal of Hydrology, 1998, 212/213: 230-249.
[17] Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115: 1 781-1 800.
[18] Wu B F, Yan N N, Xiong J, et al. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China[J]. Journal of Hydrology, 2012, 436/437: 67-80.
[19] Jia Kun, Yao Yunjun, Wei Xiangqin, et al. A review on fractional vegetation covers estimation using remote sensing[J]. Advances in Earth Science, 2013, 28(7): 774-782.
[贾坤,姚云军,魏香琴,等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展,2013,28(7): 774-782.]
[20] Granger R J. Evaporation from Natural Nonsaturated Surfaces[D]. Saskatoon: University of Saskatchewan, 1991.
[21] Granger R J. Satellite-derived estimates of evapotranspiration in the Gediz Basin[J]. Journal of Hydrology, 2000, 229: 70-76.
[22] Choudhury B J. Estimation of vapor pressure deficit over land surface from satellite observations[J]. Advances in Space Research, 1998, 22:669-672.
[23] Li Z, Tang B, Wu H, et al. Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131: 14-37.
[24] Susskind J, Barnet C, Blaisdell J. Accuracy of geophysical parameters derived from atmospheric infrared sounder/advanced microwave sounding unit as a function of fractional cloud cover[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D9), doi: 10.1029/2005JD006272.
[25] Liu Yang, Cai Bo, Ban Xianxiu, et al. Research progress of retrieving atmosphere humidity profiles from AIRS data[J]. Advances in Earth Science, 2013, 28(8): 890-896.
[刘旸,蔡波,班显秀,等. AIRS红外高光谱资料反演大汽廓线研究进展[J]. 地球科学进展,2013,28(8): 890-896.]
[26] Hu Xiuqing, Huang Yibin, Lu Qifeng, et al. Retrieving precipitable water vapor based on the near-infrared data of FY-3A Satellite[J]. Journal of Applied Meteorological Science, 2011, 22(1): 46-56.
[胡秀清, 黄意玢, 陆其峰,等. 利用FY-3A近红外资料反演水汽总量[J]. 应用气象学报, 2011, 22(1): 46-56.]
[27] Eck T F, Holben B N. The relationship between AVHRR split window temperature difference and total precipitable water over land surface[J]. International Journal of Remote Sensing, 1994, 15(3): 567-582.
[28] Gao B C, Kaufman Y J. Water vapor retrievals using MODIS near-infrared channels[J]. Journal of Geophysical Research, 2003, 103(D13): 4 389-4 395.
[29] Ferguson C R, Sheffield J, Wood E F. Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA[J]. International Journal of Remote Sensing, 2010, 31(14): 3 821-3 865.
[30] Liu X Y, Mao J T, Zhang F, et al. The analysis of water vapor distribution over Taklimakan Desert[J]. Science in China(Series D), 2012, 55(3): 446-455.
[31] He J Y, Zhang S W. Humidity retrieval in mid-latitude and tropical regions using FY-3 MWHS[J]. Journal of Remote Sensing, 2012, 16(3): 562-569.
[32] Parkison C L, Greenstone R. EOS Data Products Handbook-Volume 2[M]. Maryland: NASA Goddard Space Flight Center Greenbelt,2000.
[33] Li Honglin, Li Wanbiao. Retrieval of atmospheric total water vapor with MODIS near infrared measurements[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(1):121-128.
[李红林, 李万彪. MODIS 近红外资料反演大气水汽总含量[J]. 北京大学学报:自然科学版, 2008, 44(1): 121-128.]
[34] Smith W L. Note on the relationship between precipitable water and surface dew point[J]. Journal of Applied Meteorology, 1966, 5: 726-727.
[35] Richard G A, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M].Rome, Italy: FAO Irrigation and Drainage, 1998: 56.
[36] Venturini V, Rodriguez L, Bisht G. A comparison among different modified Priestley and Taylor equations to calculate actual evapotranspiration with MODIS data[J]. International Journal of Remote Sensing, 2011, 32(5): 1 319-1 338.
[37] Kalma J D, Mcvicar T R, Mccabe M F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008, 29(4/5): 421-469.
[38] Chehbouni A, Seen D L, Njoku E G, et al. Examination of the difference between radiative and aerodynamic surface temperature over sparsely vegetated surface[J]. Remote Sensing of Environment, 1996, 58(2): 177-186.
[39] Zhang Y, Liu C, Lei Y. An integrated algorithm for estimating regional latent heat flux and daily evapotranspiration[J]. International Journal of Remote Sensing, 2006, 27(1): 129-152.
[40] Qi Shuhua, Wang Junbang, Zhang Qingyuan, et al. Study on the estimation of air temperature from MODIS data[J]. Journal of Remote Sensing, 2005, 9(5): 570-575.
[齐述华, 王军邦, 张庆员,等. 利用MODIS 遥感影像获取近地层气温的方法研究[J]. 遥感学报, 2005, 9(5):570-575. ]
[41] Zhu Shanyou, Zhang Guixin. Progress in near surface air temperature retrieved by remote sensing technology[J]. Advances in Earth Science, 2011, 26(7):724-730.
[祝善友, 张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7):724-730.]
[42] Cresswell M P, Morse A P, Thomson M C, et al. Estimating surface air temperature from Meteosat land surface temperature using an empirical solar zenith angle model[J]. International Journal of Remote Sensing, 1999, 20(6) :1 125-1 132.
[43] Zhang Wenjian,Xu Jianmin,Fang Zongyi. Theory and Methods of Satellite Remote Sensing of Rainstorm System[M]. Beijing: China Meteorological Press, 2004: 57-112.
[张文建,许建民,方宗义. 暴雨系统的卫星遥感理论和方法[M]. 北京: 气象出版社, 2004: 57-112.]
[44] Flores F,Lillo M. Simple air temperature estimation method from MODIS satellite images on a regional scale[J]. Clilean Journal of Agricultural Researth, 2010, 70(3): 436-445.
[45] Benali A, Carvalho A C, Nunes J P, et al. Estimating air surface temperature in Portugal using MODIS LST data[J]. Remote Sensing of Environment, 2012, 124: 108-121.
[46] Vogt J V, Viau A A, Paquet F. Mapping regioal air temperature fields using satellite-derived surface skin temperatures[J]. International Journal of Climatology, 1997, 17:1 559-1 579.
[47] Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010, 114: 449-455.
[48] Lin S, Moore N J, Messina J P, et al. Evaluation of estimating daily maximum and minium air temperature with MODIS data in east Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 128-140.
[49] Goward S N, Cruickshanks G D, Hope A S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape[J]. Remote Sensing of Environment, 1985, 18: 137-146.
[50] Stisen S, Sandholt I, Norgaard A, et al. Estimation of diurnal air temperature using MSG SEVIRI data in west Africa[J]. Remote Sensing of Environment, 2007, 110(2): 262-274.
[51] Nieto H, Sandholt I, Aguado I, et al. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the lberian Peninsula[J]. Remote Sensing of Environment, 2011, 115(1): 107-116.
[52] Parviz L, Kholghi M, Valizadeh K H. Estimation of air temperature using temperature-vegetation index (TVX) method[J]. JWSS-Infahan University of Technology, 2011, 15(56): 21-34.
[53] Zhu W B, Lü A F, Jia S F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 2013, 130: 62-73.
[54] Tang R L, Li Z L, Tang B H. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation[J]. Remote Sensing of Environment, 2010, 114: 540-551.
[55] Jang J D, Viau A A, Anctil F. Neural network estimation of air temperatures from AVHRR data[J]. International Journal of Remote Sensing, 2004, 25(21): 4 541-4 554.
[56] Zhao D Z, Zhang W C, Xu S J. A neural network algorithm to retrieve near surface air temperature from landsat ETM+ imagery over the Hanjiang River Basin China[C]∥The 2007 International Geoscience and Remote Sensing Symposium. Barcelona, Spain: IEEE, 2007:1 705-1 708.
[57] Sun Y J, Wang J F, Zhang R H, et al. Air temperature retrieval from remote sensing data based on thernodynamics[J]. Theoretical Applied Climatology, 2005, 80: 37-48.
[58] Zaksek K, Schroedter H M. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4):414-421.
[59] Li Jun, Zeng Qingcun. Infrared remote sensing of clear atmosphere and its inversion problem. Part I: Theoretical study[J]. Scientia Atmospherica Sinica, 1997, 21(1):1-9.
[李俊, 曾庆存. 晴空时大气红外遥感及其反演问题[J]. 大气科学, 1997, 21(1):1-9.]
[60] Reitan C H. Surface dewpoint and water vapour aloft[J]. Journal of Applied Meteorology, 1963, 2: 776-779.
[61]Ojo O. The distribution of mean monthly precipitable water vapour and annual precipitation efficiency in Nigeria[J]. Archivfiir Meteorologie, Geophysik and Bioklimatologie, 1970, 18: 221-238.
[62] Reber E E, Swope J R. On the correlation of the total precipitable water in a vertical column and absolute humidity at the surface[J]. Journal of Applied Meteorology, 1972, 11: 1 322-1 325.
[63] Adedokun J A. On a relationship for estimating precipitable water vapour aloft from surface humidity over West Africa[J]. International Journal of Climatology, 1986, 6(2): 161-172.
[64] Adedokun J A. Surface humidity and precipitable water vapour linkage over west and central Africa: Further clarification and evaluation of existing models[J]. International Journal of Climatology, 1989, 9(4): 425-433.
[65]Adeyemi B. Empirical modeling of layered integrated water vapour using surface mixing ratio in Nigeria[65]Adeyemi B. Empirical modeling of layered integrated water vapour using surface mixing ratio in Nigeria[J]. Journal of Applied Meteorology and Climatology, 2008, 48: 369-380.
[66] Yang Jingmei, Qiu Jinheng. The empirical expressions of the relation between precipitable water and ground water vapor pressure for some areas in China[J]. Scientia Atmospherica Sinica, 1996, 20(5): 620-626.
[杨景梅, 邱金恒. 我国可降水量同地面水汽压的经验表达式[J]. 大气科学, 1996, 20(5):620-626.]
[67] Sobrino J A, EI-Kharraz J, Li Z. Surface temperature and water vapor retrieval from MODIS data[J]. International Journal of Remote Sensing, 2003, 20: 5 161-5 182.
[68] Peng G X, Li J, Chen Y H. High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia[J]. Chinese Geographical Science, 2006, 16(3): 260-264.
[69] Han K S, Viau A A, Kim Y S, et al. Statistical estimate of the hourly near-surface air humidity in eastern Canada in merging NOAA/AVHRR and GOES/IMAGER observations[J]. International Journal of Remote Sensing, 2005, 26(21): 4 763-4 784.
[70] Recondo C, Pendás E, Moreno S, et al. A simple empirical method for estimating surface water vapour pressure using MODIS near-infrared channels: Applications to northern Spain’s Asturias region[J]. International Journal of Remote Sensing, 2013, 34(9/10): 3 248-3 273.
[71] Tang Renmao, Chen Yingying, Ye Jianyuan. The comparison of water vapor content retrieved by radiosonde, ground station and satellite data[J]. Scientia Meteorologic Sinica, 2010, 30(3): 373-377.
[唐仁茂, 陈英英, 叶建元. 探空、地面及FY-2C卫星资料反演水汽含量的比较[J]. 气象科学, 2010, 30(3):373-377.]
[72] Huang Yaohuan, Jiang Dong, Zhuang Dafang, et al. Estimation of the surface vapor pressure based on the MODIS images[J]. Progress in Geography, 2010, 29(9): 1 137-1 142.
[黄耀欢, 江东, 庄大方,等. 基于MODIS遥感数据地表水汽压估算[J]. 地理科学进展, 2010, 29(9):1 137-1 142.]
[73] Zhang Dan, Liu Changming, Fu Yongfeng, et al. Estimation and analysis of near surface vapor pressure in China based on MODIS data[J]. Resources Science, 2012, 34(1): 74-80.
[张丹, 刘昌明, 付永锋,等. 基于MODIS数据的中国地面水汽压模拟与分析[J]. 资源科学, 2012, 34(1): 74-80.]
[74] Yu Fan, Liu Changsheng, Yu Zhihao. Humidity fields analysis in daytime cloudy sky with multi-spectral satellite information[J]. Acta Meteorologica Sinica, 2002, 60(6): 748-757.
[郁凡,刘长盛,余志豪. 用多光谱卫星信息分析白昼云天条件下的湿度场[J]. 气象学报,2002,60(6): 748-757.]
[75] Bisht G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study[J]. Remote Sensing of Environment, 2010, 114: 1 522-1 534.
[76] Freitas S C, Trigo I F, Macedo J, et al. Land surface temperature from multiple geostationary satellites[J]. International Journal of Remote Sensing, 2013, 34(9/10):3 051-3 068.
[77] Crosson W L, AI-Hamdan Z, Wade G M, et al. A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States[J]. Remote Sensing of Environment, 2012, 119:315-324.
[78] Sun J, Salvucci G D, Entekhabi D. Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains[J]. Remote Sensing of Environment, 2012, 127: 44-59.
[1] 祝善友,张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 724-730.
[2] 徐兴奎. 1970—2000年中国近地层大气热力增强的气候效应[J]. 地球科学进展, 2011, 26(1): 48-56.
阅读次数
全文


摘要