地球科学进展 ›› 2014, Vol. 29 ›› Issue (5): 569 -576. doi: 10.11867/j.issn.1001-8166.2014.05.0569

上一篇    下一篇

北冰洋酸化指标——海水文石饱和度变异的研究进展 *
祁第 1, 2( ), 陈立奇 2, *( )   
  1. 1. 厦门大学海洋与地球学院,福建厦门 361005
    2.国家海洋局海洋-大气化学与全球变化重点实验室,国家海洋局第三海洋研究所, 福建厦门 361005
  • 出版日期:2014-05-23
  • 通讯作者: 陈立奇 E-mail:qidi60@qq.com;lqchen@soa.gov.cn
  • 基金资助:
    南北极环境综合考察与评估专项项目(编号:CHINARE2012-2015:01-04-02, 01-02-01,03-04-02, 04-04, 04-03-05);国家自然科学基金重点项目“南大洋N 2O源汇格局:驱动机制及其对海洋N 2O收支的影响”(编号:41230529)资助

Review on Researches of Aragonite Saturation State in the Arctic Ocean: A Key Parameter of Arctic Ocean Acidification

Di Qi 1, 2( ), Liqi Chen 2, *( )   

  1. (1. Ocean and Earth Science College of Xiamen University, Xiamen 361005, China
    2. Key Laboratory of Global Change and Marine-Atmospheric Chemistry of State Oceanic Administration (SOA),Third Institute of Oceanography, SOA, Xiamen 361005,China)
  • Online:2014-05-23 Published:2014-05-10
  • Contact: Liqi Chen E-mail:qidi60@qq.com;lqchen@soa.gov.cn

文石饱和度(Ω文石)是评估海洋酸化及对海洋钙质生物影响的重要指标之一。海洋吸收CO2引起海洋酸化,导致Ω文石显著下降。模式研究预测表明北冰洋表层海水将成为最先出现Ω文石小于1的世界大洋。本文通过对北冰洋Ω文石有关研究进行归纳总结,重点阐述了北冰洋Ω文石的分布特征,讨论海-气CO2交换过程、融冰过程以及生物过程等因素对北冰洋Ω文石分布的影响,展望未来的变化趋势和提出一些关键的科学问题。

:Aragonite saturation state (Ωarg) is a key parameter to assess the calcifying marine organisms’ impacts of ocean acidification. Oceans are becoming more acidic and lend to the decreased of the aragonite saturation state. The Arctic Ocean is an important part of the global ocean system with a unique larger continental shelve and rupit sea ice declineing. Model simulations have presented the Arctic Ocean are expected to become the first undersaturated (Ωarg <1) in deep oceans. However, there are still no enough adequate data to be gained due to geological politics and harsh environments. This paper attempts to summarize some?conclusion?and?implications?of?the?research, focused the spatial and temporal distributions of Ωarg and to discuss their driving factors, including sea-air CO2 exchange, sea ice melt, biological processes etc.. The tendency of Ωarg in the context of Arctic Ocean acidification and sea-ice retreat are also touched upon.

中图分类号: 

图1 西北冰洋 Ω 文石平面分布 [ 18 ]
Fig 1. Surface distribution of Ω arg in the Western Arctic Ocean [ 18 ]
图2 北太平洋和北冰洋 Ω arg断面分布 [ 26 ] 航次站位以北太平洋温哥华岛为起点,环绕北美洲北部沿岸,途经NP(北太平洋)、BS(白令海)、CS(楚科奇海)、CB(加拿大海盆)、CAA(加拿大北极群岛)、BB表示巴芬湾和LS(拉布拉多海),最终到达北大西洋北部纽芬兰。灰色部分表示海底地形,黑色圆点表示采样站位和层位
Fig 2. Distribution of Ω arg in the North Pacific and Western Arctic Ocean [ 26 ] Hydrographic stations were occupied around northern North America The transect, starting from Vancouver Island in the North Pacific and ending at Newfoundland in the North Atlantic, crosses seven hydrographical domains: NP. North Pracific; CS. Chukchi Sea; BS. Bering Sea; CB. Canada Basin; CAA.Canadian Arctic Archipelago; BB. Baffin Bay; LS. Labrador Sea
图3 北冰洋加拿大海盆 Ω 文石与融冰水比例(f SIM)关系 [ 18 ]
Fig 3. Relationship between Ω aragonite and f SIM in the surface water of Canadian Basin [ 18 ]
[1] Solomon S, Qin D, Manning M, et al. Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: The physical science basis[M]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
, 2007.
[2] Indermühle A, Stocker T, Joos F, et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica[J]. Nature, 1999, 398(6 723): 121-126.
[3] US NOAA/ESRL. Trends in Atmospheric Carbon Dioxide[R/OL]. 2014[2014-02-16]. .
URL    
[4] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371.
[5] Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: The other CO2 problem[J]. Marine Science, 2009,(1): 169-192.
[6] Royal Society. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide[R]. London: The Royal Society, 2005.
[7] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681-686.
[8] Fabry V J, McClintock J B, Mathis J T, et al. Ocean acidification at high latitudes: The bellweather[J]. Oceanography, 2009, 22: 160-171.
[9] Steinacher M, Joos F, Frolicher T, et al. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model[J]. Biogeosciences, 2009, 6: 515-533.
[10] Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407(6 802): 364-367.
[11] Su Xiang, Liu Chuanlian. Effects of ocean acidification on Coccolithophores[J]. Advances in Earth Science, 2012, 27(11): 1274-1280.
[苏翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.]
[12] Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2014, 18: 4031, doi: 10.1029/2004GB002247.
[13] Feely R A, Sabine C L, Hernandez-Ayon J M, et al. Evidence for upwelling of corrosive "acidified" water onto the continental shelf[J]. Science, 2008, 320(5882): 1490-1492.
[14] McNeil B I,Matear R J. Southern ocean acidification: A tipping point at 450 ppm atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 18 860-18 864.
[15] Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt[J]. Science, 2009, 326(5956): 1098-1100.
[16] Bates N, Mathis J. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks[J]. Biogeosciences, 2009, 6(6): 2433-2459.
[17] Cai W J, Chen L, Chen B, et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin[J]. Science, 2010, 329(5 991): 556-559.
[18] Robbins L L, Wynn J G, Lisle J T, et al. Baseline monitoring of the Western Arctic Ocean estimates 20% of the Canadian Basin surface waters are undersaturated with respect to aragonite[J]. PLoS One, 2013, 8(9):e73796, doi:10.1371/journal.pone.0073796.
[19] Yamamoto A, Kawamiya M, Ishida A, et al. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification[J]. Biogeosciences, 2012, 9(6): 2 365-2 375.
[20] Hunt B, Pakhomov E, Hosie G, et al. Pteropods in southern ocean ecosystems[J]. Progress in Oceanography, 2008, 78(3): 193-221.
[21] Comeau S, Alliouane S, Gattuso J. Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina[J]. Marine Ecology Progress Series, 2012, 456: 279-284.
[22] Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science, 1983, 283(7): 780-799.
[23] Pelletier G J, Lewis E, Wallace D W R. CO2SYS.XLS: A Calculator for the CO2 System in Seawater for Microsoft Excel/VBA. Version 17[R]. Olympia (Washington): Washington State Department of Ecology, 2012.
[24] Jutterstrm S, Anderson L G. The saturation of calcite and aragonite in the Arctic Ocean[J]. Marine Chemistry, 2005, 94: 101-110.
[25] Bates N R, Mathis J T, Cooper L W. Ocean acidification and biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2009, 114: C11007, doi:10.1029/2008JC004862.
[26] Yamamoto-Kawai M, McLaughlin F, Carmack E. Ocean acidification in the three oceans surrounding northern North America[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6 274-6 284.
[27] Bates N, Orchowska M, Garley R, et al. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean—How biological processes exacerbate the impact of ocean acidification[J]. Biogeosciences, 2013, 10(8): 5 281-5 309.
[28] Chierici M, Fransson A. Calcium carbonate saturation in the surface water of the Arctic Ocean: Undersaturation in freshwater influenced shelves[J]. Biogeosciences, 2009, 6(11): 2 421-2 431.
[29] Popova E, Yool A, Coward A, et al. Regional variability of acidification in the Arctic: A sea of contrasts[J]. Biogeosciences Discussions, 2013, 10(2): 2 937-2 965.
[30] Yamamoto-Kawai M, McLaughlin F, Carmack E. Effects of ocean acidification, warming and melting of sea ice on aragonite saturation of the Canada Basin surface water[J]. Geophysical Research Letters, 2011, 38(3), doi:10.1029/2010GL045501.
[31] Swift J H, Jones E P, Aagaard K, et al. Waters of the Makarov and Canada Basins[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44:1503-1529.
[32] McLaughlin F A, Carmack E C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003-2009[J]. Geophysical Research Letters, 2010, 37(24), doi:10.1029/2010GL045459.
[33] Carmack E C, McLaughlin F A, Vagle S, et al. Structures and property distributions in the three oceans surrounding Canada in 2007: A basis for a long-term ocean climate monitoring strategy[J]. Atmosphere-Ocean, 2010, 48(4): 211-224.
[34] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501, doi:10.1029/2007GL029703.
[35] Maslanik J, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501, doi:10.1029/2007GL032043.
[36] Giles K A, Laxon S W, Ridout A L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum[J]. Geophysical Research Letters, 2008, 35(22): L22502, doi:10.1029/2008GL035710.
[37] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic Sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703, doi:10.1029/2007GL031972.
[38] Bates N R, Best M H, Hansell D A. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24): 3 303-3 323.
[39] [JP2]Moran S, Kelly R, Hagstrom K, et al. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24): 3427-3451.
[40] Mathis J T, Pickart R S, Byrne R H, et al. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states[J]. Geophysical Research Letters, 2012,39: L07606, doi:10.1029/2012GL051574.
[41] Wang M, Overland J E. A sea ice free summer Arctic within 30 years?[J]. Geophysical Research Letters,2009,36: L07502, doi:10.1029/2009GL037820.
[42] Liu J, Song M, Hortonc R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, doi:10.1073/pnas.1219716110.
[43] Mu Longjiang, Zhao Jinpin. Variability of the Greenland Sea ice edg[J]. Advances in Earth Science, 2013, 28(6): 709-717.
[牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.]
[1] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[2] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示[J]. 地球科学进展, 2014, 29(7): 865-873.
[3] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[4] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 2014(6): 712-722.
[5] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[6] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[7] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[8] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[9] 赵进平,史久新,金明明,李超伦,矫玉田,卢勇. 楚科奇海融冰过程中的海水结构研究[J]. 地球科学进展, 2010, 25(2): 154-162.
[10] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[11] 赵进平,李涛,张树刚,矫玉田. 北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J]. 地球科学进展, 2009, 24(1): 33-41.
[12] 曹知勉,戴民汉. 海洋钙离子非保守行为及海洋钙问题[J]. 地球科学进展, 2008, 23(1): 8-16.
[13] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[14] 史久新,赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.
阅读次数
全文


摘要