地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1274

所属专题: IODP研究

IODP研究 上一篇    下一篇

海洋酸化对颗石藻的影响
苏 翔,刘传联   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2012-10-08 修回日期:2012-10-31 出版日期:2012-11-10
  • 基金资助:

    国家自然科学基金项目“从室内培养到地质记录探索颗石藻在南海碳循环中的应用”(编号:91228204)资助.

Effects of Ocean Acidification on Coccolithophores

Su Xiang, Liu Chuanlian   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2012-10-08 Revised:2012-10-31 Online:2012-11-10 Published:2012-11-10

工业革命以来人类活动产生了大量二氧化碳气体(CO2)并释放到大气中。CO2溶于海水,造成海水pH值降低,改变海洋碳酸系统的平衡。海洋酸化对海洋生态系统特别是钙化生物构成威胁。颗石藻作为主要的钙化浮游生物,在海洋碳循环过程中起着重要的作用。大多数培养实验表明CO2浓度上升会促进颗石藻光合作用。而海洋酸化对不同种或不同品系颗石藻钙化作用产生不同的影响。

Since the Industrial Revolution a large amount of carbon dioxide (CO2) as a result of human activities has been released into the atmosphere. Dissolution of CO2 into seawater reduced the ocean pH and changed the balance of the ocean carbonate system. Ocean acidification threatens the marine ecosystems, especially calcifying organisms. Coccolithophore are major calcification plankton and play an important role in the ocean carbon cycle. Most of the culture experiments showed that the rise of CO2 concentration would promote photosynthesis in coccolithophores. Ocean acidification has various effects on the calcification of different coccolithophore species or strains.

中图分类号: 

[1]Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007.

[2]Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9: 18-27.

[3]Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature,2003, 425: 365.

[4]Hnisch B, Ridgwell A, Schmidt D N, et al. The geological record of ocean acidification[J]. Nature, 2012, 335(6 072): 1 058-1 063.

[5]Tyrrell T, Holligan P M, Mobley C D. Optical impacts of oceanic coccolithophore blooms[J]. Journal of Geophysical Research, 1999, 104: 3 223-3 241.

[6]Broecker W, Clark E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments[J]. Paleoceanography, 2009, 24, PA3205, doi:10.1029/2009PA001731.

[7]Hutchins D A. Forecasting the rain ratio[J]. Nature, 2011, 476: 41-42.

[8]Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305: 367-371.

[9]Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437: 681-686.

[10]Feeley R A, Doney S C, Cooley S R. Ocean acidification: Present conditions and future changes in a high-CO2 world[J]. Oceanography, 2009, 22(4): 36-47.

[11]Kleypas J A, Langdon C. Overview of CO2-induced changes in seawater chemistry[C]∥Proceeding 9th International Coral Reef Symposium. Bali Indonesia,2001.

[12]Gattuso J P, Allemad D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in croal reefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 1999, 39: 160-183.

[13]Volk T, Hoffert M I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[C]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Wasnington DC: American Geophysical Union, 1985: 99-110.

[14]de Vargas C, Aubry M-P, Probert I, et al. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers[C]∥Falowski P, Knoll A H, eds. Evolution of Primary Producers in the Sea. New York: Elsevier, 2007: 251-286.

[15]Archer D, Maier-Reimer E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367: 260-263.

[16]Sekino K, Shiraiwa Y. Accumulation and utilization of dissolved inorganic carbon by a marine unieullular coccolithophorid Emiliania huxleyi[J]. Plant Cell Physiol, 1994, 35: 353-361.

[17]Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407: 364-367.

[18]Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biological Ecology, 2002, 272: 55-70.

[19]Feng Y, Warner M, Zhang Y, et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 2008, 43: 87-98.

[20]Barcelos e Ramos J, Müller M N, Riebesell U. Short term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations[J]. Biogeosciences, 2010, 7: 177-186.

[21]Shi D, Xu Y, Morel F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J]. Biogeosciences, 2009, 6: 1 199-1 207.

[22]Müller M N, Schulz K G, Riebesell U. Effects of longterm high CO2 exposure on two species of coccolithophores[J]. Biogeosciences, 2010, 7: 1 109-1 116.

[23]Rickaby R E M, Henderiks J, Young J N. Perturbing phytoplankton: Response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species[J]. Climate of the Past, 2010, 6: 771-785.

[24]Langer G, Geisen M, Baumann K-H, et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry[J]. Geochemistry Geophysics Geosystems, 2006, 7: Q09006.

[25]Sciandra A, Harlay J, Lefevre D, et al. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation[J]. Marine Ecology Progress Series, 2003, 261: 111-122.

[26]Lenardos N, Geider R J. Elevated atmospheric CO2 increases organic carbon fixation by Emiliania huxleyi (Haptophyta) under nutrient-limited, high-light conditions[J]. Journal of Phycology, 2005, 41: 1 196-1 203.

[27]Gao K, Ruan Z, Villafane V E, et al.Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi[J]. Limnology and Oceanography, 2009, 54:1 855-1 862.

[28]Riebesell U, Tortell P D. Effects of ocean acidification on pelagic organisms and ecosystems[M]∥Gattuso J P, Hansson L, eds. Ocean Acidification. New York: Oxford University Press, 2011: 99-121.

[29]Stoll H M, Schrag D P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry Geophysics Geosystems, 2000, 1 (5):1999GC000015.

[30]Ramaswamy V, Gaye B. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53: 271-293.

[31]Iglesias-Rodriguez M D, Halloran P R, Rickaby R E M,et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320: 336-340.

[32]Beaufort L, Heussner S. Coccolithophorids on the continental slope of the Bay of Biscay-Production, transport and contribution to mass fluxes[J]. Deep-Sea Research II, 1999, 46: 2 147-2 174.

[33]Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep-Sea Research II, 2000, 47: 1 679-1 700.

[34]Beaufort L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite[J]. Micropaleontology, 2005, 51: 289-298.

[35]Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Networks, 1999, 12: 553-560.

[36]Beaufort L, Dollfus D. Automatic recognition of coccolith by dynamical neural network[J]. Marine Micropaleontology, 2004, 51(1/2): 57-73.

[37]Beaufort L, Probert I, Buchet N. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean[J]. Geochemistry Geophysics Geosystems, 2007, 8: Q08011.

[38]Beaufort L, Couapel M, Buchet N, et al. Calcite production by coccolithophores in the south east Pacific Ocean[J]. Biogeosciences, 2008, 5: 1 101-1 117.

[39]Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476: 80-83.

[40]Grelaud M, Schimmelmann A, Beaufort L. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917-2004[J]. Biogeosciences, 2009, 6: 2 025-2 039.

[41]Zondervan I, Zeebe R E, Rost B, et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2[J]. Global Biogeochemical Cycles, 2001, 15 (2): 507-516.

[42]Delille B, Harlay J, Zondervan I, et al. Reponse of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi[J]. Global Biogeochemical Cycles, 2005, 19: GB2023.

[43]Engel A, Zondervan I, Aerts K, et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments[J]. Limnology and Oceanography, 2005, 50: 493-504.

[44]Riebesell U, Bellerby R G J, Engel A, et al. Comment on “Phytoplankton calcification in a high CO2-world”[J]. Science, 2008, 322: 1 466.

[45]Iglesias-Rodriguez M D, Buitenhuis E T, Raven J A, et al. Response to Comment on “Phytoplankton calcification in a high-CO2 world”[J]. Science, 2008, 322: 1 466.

[46]Langer G, Nehrke G, Probert I, et al. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry[J]. Biogeosciences, 2009, 6: 2 637-2 646.

[47]Kroeker K J, Kordas R L, Crim R N,et al.Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13: 1 419-1 434.

[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[3] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[6] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[7] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[8] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[9] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[12] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[13] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[14] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示[J]. 地球科学进展, 2014, 29(7): 865-873.
[15] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
阅读次数
全文


摘要