[1]Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007.
[2]Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9: 18-27.
[3]Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature,2003, 425: 365.
[4]Hnisch B, Ridgwell A, Schmidt D N, et al. The geological record of ocean acidification[J]. Nature, 2012, 335(6 072): 1 058-1 063.
[5]Tyrrell T, Holligan P M, Mobley C D. Optical impacts of oceanic coccolithophore blooms[J]. Journal of Geophysical Research, 1999, 104: 3 223-3 241.
[6]Broecker W, Clark E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments[J]. Paleoceanography, 2009, 24, PA3205, doi:10.1029/2009PA001731.
[7]Hutchins D A. Forecasting the rain ratio[J]. Nature, 2011, 476: 41-42.
[8]Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305: 367-371.
[9]Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437: 681-686.
[10]Feeley R A, Doney S C, Cooley S R. Ocean acidification: Present conditions and future changes in a high-CO2 world[J]. Oceanography, 2009, 22(4): 36-47.
[11]Kleypas J A, Langdon C. Overview of CO2-induced changes in seawater chemistry[C]∥Proceeding 9th International Coral Reef Symposium. Bali Indonesia,2001.
[12]Gattuso J P, Allemad D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in croal reefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 1999, 39: 160-183.
[13]Volk T, Hoffert M I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[C]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Wasnington DC: American Geophysical Union, 1985: 99-110.
[14]de Vargas C, Aubry M-P, Probert I, et al. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers[C]∥Falowski P, Knoll A H, eds. Evolution of Primary Producers in the Sea. New York: Elsevier, 2007: 251-286.
[15]Archer D, Maier-Reimer E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367: 260-263.
[16]Sekino K, Shiraiwa Y. Accumulation and utilization of dissolved inorganic carbon by a marine unieullular coccolithophorid Emiliania huxleyi[J]. Plant Cell Physiol, 1994, 35: 353-361.
[17]Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407: 364-367.
[18]Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biological Ecology, 2002, 272: 55-70.
[19]Feng Y, Warner M, Zhang Y, et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 2008, 43: 87-98.
[20]Barcelos e Ramos J, Müller M N, Riebesell U. Short term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations[J]. Biogeosciences, 2010, 7: 177-186.
[21]Shi D, Xu Y, Morel F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J]. Biogeosciences, 2009, 6: 1 199-1 207.
[22]Müller M N, Schulz K G, Riebesell U. Effects of longterm high CO2 exposure on two species of coccolithophores[J]. Biogeosciences, 2010, 7: 1 109-1 116.
[23]Rickaby R E M, Henderiks J, Young J N. Perturbing phytoplankton: Response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species[J]. Climate of the Past, 2010, 6: 771-785.
[24]Langer G, Geisen M, Baumann K-H, et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry[J]. Geochemistry Geophysics Geosystems, 2006, 7: Q09006.
[25]Sciandra A, Harlay J, Lefevre D, et al. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation[J]. Marine Ecology Progress Series, 2003, 261: 111-122.
[26]Lenardos N, Geider R J. Elevated atmospheric CO2 increases organic carbon fixation by Emiliania huxleyi (Haptophyta) under nutrient-limited, high-light conditions[J]. Journal of Phycology, 2005, 41: 1 196-1 203.
[27]Gao K, Ruan Z, Villafane V E, et al.Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi[J]. Limnology and Oceanography, 2009, 54:1 855-1 862.
[28]Riebesell U, Tortell P D. Effects of ocean acidification on pelagic organisms and ecosystems[M]∥Gattuso J P, Hansson L, eds. Ocean Acidification. New York: Oxford University Press, 2011: 99-121.
[29]Stoll H M, Schrag D P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry Geophysics Geosystems, 2000, 1 (5):1999GC000015.
[30]Ramaswamy V, Gaye B. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53: 271-293.
[31]Iglesias-Rodriguez M D, Halloran P R, Rickaby R E M,et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320: 336-340.
[32]Beaufort L, Heussner S. Coccolithophorids on the continental slope of the Bay of Biscay-Production, transport and contribution to mass fluxes[J]. Deep-Sea Research II, 1999, 46: 2 147-2 174.
[33]Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep-Sea Research II, 2000, 47: 1 679-1 700.
[34]Beaufort L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite[J]. Micropaleontology, 2005, 51: 289-298.
[35]Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Networks, 1999, 12: 553-560.
[36]Beaufort L, Dollfus D. Automatic recognition of coccolith by dynamical neural network[J]. Marine Micropaleontology, 2004, 51(1/2): 57-73.
[37]Beaufort L, Probert I, Buchet N. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean[J]. Geochemistry Geophysics Geosystems, 2007, 8: Q08011.
[38]Beaufort L, Couapel M, Buchet N, et al. Calcite production by coccolithophores in the south east Pacific Ocean[J]. Biogeosciences, 2008, 5: 1 101-1 117.
[39]Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476: 80-83.
[40]Grelaud M, Schimmelmann A, Beaufort L. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917-2004[J]. Biogeosciences, 2009, 6: 2 025-2 039.
[41]Zondervan I, Zeebe R E, Rost B, et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2[J]. Global Biogeochemical Cycles, 2001, 15 (2): 507-516.
[42]Delille B, Harlay J, Zondervan I, et al. Reponse of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi[J]. Global Biogeochemical Cycles, 2005, 19: GB2023.
[43]Engel A, Zondervan I, Aerts K, et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments[J]. Limnology and Oceanography, 2005, 50: 493-504.
[44]Riebesell U, Bellerby R G J, Engel A, et al. Comment on “Phytoplankton calcification in a high CO2-world”[J]. Science, 2008, 322: 1 466.
[45]Iglesias-Rodriguez M D, Buitenhuis E T, Raven J A, et al. Response to Comment on “Phytoplankton calcification in a high-CO2 world”[J]. Science, 2008, 322: 1 466.
[46]Langer G, Nehrke G, Probert I, et al. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry[J]. Biogeosciences, 2009, 6: 2 637-2 646.
[47]Kroeker K J, Kordas R L, Crim R N,et al.Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13: 1 419-1 434. |