地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 281 -293. doi: 10.11867/j.issn.1001-8166.2018.03.0281

全球变化研究 上一篇    下一篇

环青海湖地区气候变化特征及其季风环流因素
丁之勇( ), 鲁瑞洁 *( ), 刘畅, 段晨曦   
  1. 1.地表过程与资源生态国家重点实验室,北京师范大学地理科学学部,北京 100875;2.防沙治沙教育部工程研究中心,北京师范大学地理科学学部,北京 100875
  • 收稿日期:2017-11-09 修回日期:2018-02-17 出版日期:2018-03-20
  • 通讯作者: 鲁瑞洁 E-mail:ucaszyd@escience.cn;ruijielu@bnu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“晚第四纪青海湖水位变化与风沙地貌发育过程”(编号:41571184)资助.

Temporal Change Characteristics of Climatic and Its Relationships with Atmospheric Circulation Patterns in Qinghai Lake Basin

Zhiyong Ding( ), Ruijie Lu *( ), Chang Liu, Chenxi Duan   

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;2.Engineering Center of Desertification and Blown-Sand Control of Ministry of Education, Faculty of Geographical Science,Beijing Normal University, Beijing 100875, China
  • Received:2017-11-09 Revised:2018-02-17 Online:2018-03-20 Published:2018-05-02
  • Contact: Ruijie Lu E-mail:ucaszyd@escience.cn;ruijielu@bnu.edu.cn
  • About author:

    First author:Ding Zhiyong(1990-),male, Fuzhou City,Jiangxi Province, Ph.D student. Research areas include climate change and environmental evolution.E-mail:ucaszyd@escience.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Late Quaternary lake level variations and aeolian geomorphic process in Qinghai Lake area” (No.41571184).

基于青海湖流域及其周边地区11个气象站点1959—2015年逐月气温和降水数据,采用Mann-Kendall趋势分析、突变分析、Morlet连续小波变换、Pearson相关分析和R/S分析等方法,分析了平均气温、平均最高气温、平均最低气温和降水的年、季变化特征及其季风环流影响因素,并探讨了该区域未来气候变化的总体趋势。研究结果表明:①环青海湖地区气温和降水总体上呈现出显著增加的趋势,秋季和冬季的平均气温、平均最高气温和平均最低气温上升速率以及夏季和冬季降水增加速率最为明显。②气温和降水均存在较为明显的突变现象,气温突变时间普遍在1986年左右,而降水突变时间在2002年左右;研究区气温普遍存在2~3年的短周期,8~10年和30~32年的中长周期变化,而降水则存在着3~4年、6~7年的短周期和30~32年的长周期变化。③东亚夏季风指数对研究区秋季气温和夏季降水具有较大的影响,而印度夏季风主要影响了研究区春季气温和降水;北极涛动指数(AO)对研究区秋季和冬季气温的上升影响最大,对春季、夏季和冬季降水的影响也明显高于其他指数;北大西洋涛动指数(NAO)和厄尔尼诺—南方涛动(ENSO)对研究区气温影响较小,NAO主要影响夏季和冬季降水,而ENSO主要影响秋季降水。④研究区年均气温和年降水的Hurst指数均大于0.5,说明研究区气温和降水在未来一段时间内仍以上升趋势为主。

Based on monthly meteorological data from 11 stations(1959-2015)in Qinghai Basin(QHB) and its surrounding area, we analyzed monthly average temperature(Tmean), average maximum(TXam), minimum temperature(TNam) and precipitation variation characteristics as well as the influence of atmospheric oscillation on these parameters using Mann-Kendall trend analysis, mutation analysis, continuous Morlet wavelet transform, Pearson correlation analysis and R/S analysis method. In addition, the future trend of climate change in the regional scale was also discussed. We found that the temperature and precipitation increment were obvious in the region, especially the Tmean in autumn, winter, TXam and TNam in summer and winter precipitation showing significant increase. Temperature and precipitation experienced abrupt changes around 1986 and 2002, respectively. The period of oscillation of each temperature indices was similar featuring 2~3 years,8~10 years short- cycle and 30~32 years middle- cycle, while that for the precipitation featured 3~4 years,6~7 years short- cycle and 30~32 years middle- cycle. The East Asian Summer Monsoon Index(EASMI) anomaly is an important factor for the anomaly of autumn temperature and summer precipitation in QHB, while the Indian Summer Monsoon Index(ISMI) mainly affects the spring temperature and precipitation in the research area. The effects of Arctic Oscillation Index (AO) were relatively strong on temperature variation, especially in autumn and winter, and AO had significant effect on the precipitation in spring, summer and winter, too. The North Atlantic Oscillation Index (NAO) and ENSO have weak influence on the study area, NAO mainly affects summer and winter precipitation, while ENSO mainly affects autumn precipitation. The Hurst index of Tmean and annual precipitation in QHB are higher than 0.5, indicating that the temperature and precipitation in the study area will continue to be the positive trend in the future period.

中图分类号: 

图1 青海湖流域气象站点分布及1959—2015年气温和降水平均值
Fig.1 Distribution of meteorological stations and the average temperature and precipitation in 1959-2015 in Qinghai Lake Basin
图1 青海湖流域气象站点分布及1959—2015年气温和降水平均值
Fig.1 Distribution of meteorological stations and the average temperature and precipitation in 1959-2015 in Qinghai Lake Basin
图2 环青海湖地区年平均气温、年平均最高和最低气温变化趋势
Fig.2 Annual variation and linear tendency of temperature in Qinghai Lake Basin
图2 环青海湖地区年平均气温、年平均最高和最低气温变化趋势
Fig.2 Annual variation and linear tendency of temperature in Qinghai Lake Basin
表1 青海湖流域温度和降水季节变化趋势
Table 1 The seasonal trends for temperature and precipitation
表1 青海湖流域温度和降水季节变化趋势
Table 1 The seasonal trends for temperature and precipitation
图3 环青海湖地区降水变化趋势
Fig.3 Annual variation and linear tendency of precipitation in Qinghai Lake Basin
图3 环青海湖地区降水变化趋势
Fig.3 Annual variation and linear tendency of precipitation in Qinghai Lake Basin
图4 气温Mann-Kendall突变检验
Fig.4 Abrupt change of annual average temperature in Qinghai Lake Basin using Mann-Kendall test
图4 气温Mann-Kendall突变检验
Fig.4 Abrupt change of annual average temperature in Qinghai Lake Basin using Mann-Kendall test
表2 青海湖流域气温和降水突变分析
Table 2 Abrupt change of temperature and precipitation in Qinghai Lake Basin
表2 青海湖流域气温和降水突变分析
Table 2 Abrupt change of temperature and precipitation in Qinghai Lake Basin
图5 降水Mann-Kendall突变检验
Fig.5 Abrupt change of annual average precipitation in Qinghai Lake Basin using Mann-Kendall test
图5 降水Mann-Kendall突变检验
Fig.5 Abrupt change of annual average precipitation in Qinghai Lake Basin using Mann-Kendall test
图6 环青海湖地区气温和降水小波功率谱和小波方差图
Fig.6 The wavelet power spectrum and wavelet variance map of annual average temperature and precipitation in Qinghai Lake Basin
图6 环青海湖地区气温和降水小波功率谱和小波方差图
Fig.6 The wavelet power spectrum and wavelet variance map of annual average temperature and precipitation in Qinghai Lake Basin
图7 环青海湖地区气温、降水与季风变化关系
Fig.7 The correlation coefficient between monsoon and annual average temperature, precipitation in Qinghai Lake Basin
图7 环青海湖地区气温、降水与季风变化关系
Fig.7 The correlation coefficient between monsoon and annual average temperature, precipitation in Qinghai Lake Basin
表3 大气环流指数与青海湖流域气温和降水变化相关性
Table 3 The correlation between different atmospheric circulation and temperature, precipitation in Qinghai Lake Basin
表3 大气环流指数与青海湖流域气温和降水变化相关性
Table 3 The correlation between different atmospheric circulation and temperature, precipitation in Qinghai Lake Basin
表4 青海湖流域各气候因子Hurst指数
Table 4 Hurst index of each climatic factor in Qinghai Lake Basin
表4 青海湖流域各气候因子Hurst指数
Table 4 Hurst index of each climatic factor in Qinghai Lake Basin
[1] IPCC. Summary for policymakers[M]∥Stocker T F, Qin D, Plattne G-K, et al, eds.Climate Change 2013: The Physical Science Basis. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013.
[2] Zhang Bin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfall and drought events on grassland ecosystems[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1 008-1 018.
[张彬,朱建军,刘华民,等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1 008-1 018.]
[3] Karl T R, Kukla G, Razuvayev V N, et al. Global warming evidence for asymmetric diurnal temperature change[J]. Geophysical Research Letters, 1991, 18(12): 2 253-2 256.
doi: 10.1029/91GL02900     URL    
[4] Tian Q, Yang S.Regional climatic response to global warming: Trends in temperature and precipitation in the Yellow, Yangtze and Pearl River basins since the 1950s[J]. Quaternary International, 2016, 440:1-11.
[5] Qu M, Wan J, Hao X.Analysis of diurnal air temperature range change in the continental United States[J]. Weather and Climate Extremes, 2014, 4: 86-95.
doi: 10.1016/j.wace.2014.05.002     URL    
[6] Ren G, Zhou Y.Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961-2008[J]. Journal of Climate, 2014, 27(6): 2 340-2 360.
doi: 10.1175/JCLI-D-13-00393.1     URL    
[7] Ren Guoyu, Guo Jun, Xu Mingzhi, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6):942-956.
[任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6): 942-956.]
doi: 10.11676/qxxb2005.090    
[8] Zhang Guohong, Li Zhicai, Song Yan, et al. Spatial pattern of change trend in rainfall of China and East Asia summer monsoon[J]. Arid Land Geography, 2010, 34(1): 34-42.
[张国宏, 李智才, 宋燕, 等. 中国降水量变化的空间分布特征与东亚夏季风[J]. 干旱区地理, 2011,34(1): 34-42.]
[9] Peng S, Gang C, Cao Y, et al. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100[J]. International Journal of Climatology, 2017.DOI:10.1002/joc.5331.
[10] Zhang Zhengyong, Liu Lin, Tang Xiangling.The regional difference and abrupt events of climatic change in Tianshan Mountains during 1960-2010[J]. College of Geography Science,2012,31(11) : 1 475-1 484.
[张正勇, 刘琳, 唐湘玲. 1960—2010年中国天山山区气候变化区域差异及突变特征[J]. 地理科学进展, 2012, 31(11): 1 475-1 484.]
[11] Jia Wenxiong, He Yuanqing, Li Zongxing, et al. The regional difference and catastrophe of climatic change in Qilian Mt. region[J]. Journal of Geographical Sciences, 2008, 63(3): 257-269.
[贾文雄, 何元庆, 李宗省, 等. 祁连山区气候变化的区域差异特征及突变分析[J]. 地理学报, 2008, 63(3): 257-269.]
[12] Li Zongxing, He Yuanqing, Xin Huijuan, et al. Spatio-temporal variations of temperature and precipitation in Mts. Hengduan region during 1960-2008[J]. Journal of Geographical Sciences, 2010, 65(5): 563-579.
[李宗省, 何元庆, 辛惠娟, 等. 我国横断山区1960-2008年气温和降水时空变化特征[J]. 地理学报, 2010, 65(5): 563-579.]
[13] Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and Indian Monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 976-984.
[姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984.]
[14] Chen Y, Deng H, Li B, et al. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China[J]. Quaternary International, 2014, 336: 35-43.
doi: 10.1016/j.quaint.2013.12.057     URL    
[15] You Q, Kang S, Aguilar E, et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J]. Climate Dynamics, 2010, 36(11/12): 2 399-2 417.
[16] Chen F, Wu D, Chen J, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
doi: 10.1016/j.quascirev.2016.10.021     URL    
[17] Zuo Jinqing.Relationship Between AO/NAO and ENSO and Their Impact on Climate Anomalies in China[D]. Lanzhou: Lanzhou University, 2011.
[左金清. AO/NAO与ENSO的联系及其对中国气候异常的影响[D]. 兰州: 兰州大学, 2011.]
[18] Li L, Li C, Song J.Arctic Oscillation anomaly in winter 2009/2010 and its impacts on weather and climate[J]. Science in China (Series D), 2012, 55(4): 567-579.
[19] Liu Yimim, Liu Boqi, Ren Rongcai, et al. Current super El Niño event and its impacts on climate in China in spring and summer[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 241-250.
[刘屹岷, 刘伯奇, 任荣彩, 等. 当前重大厄尔尼诺事件对我国春夏气候的影响[J]. 中国科学院院刊, 2016, 31(2): 241-250.]
[20] Huang Ronghui.Recent progresses in research on the variabilities of the East Asian monsoon system and occurring mechanism of severe climate disasters in China[J]. Bulletin of Chinese Academy of Sciences, 2010, 25(2): 202-206.
[黄荣辉. 东亚季风气候系统变异和我国重大气候灾害发生机理研究进展[J]. 中国科学院院刊, 2010, 25(2): 202-206.]
[21] Cui B, Li X.The impact of climate changes on water level of Qinghai Lake in China over the past 50 years[J]. Hydrology Research, 2015, 237:532-542.
[22] Li Lin, Shi Xinghe, Shen Hongyan, et al. Cause of water level fluctuation in Qinghai Lake from 1960 to 2009 and its future trend forecasting[J]. Journal of Natural Resource, 2011, 26(9): 1 566-1 574.
[李林, 时兴合, 申红艳, 等. 1960—2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J]. 自然资源学报, 2011, 26(9): 1 566-1 574.]
[23] Li Jianping, Zeng Qingcun.A new monsoon index, its interannual variability and relation with monsoon precipitation[J]. Climatic and Environmental Research, 2005, 10(3): 351-365.
[24] Mann H B.Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259.
doi: 10.2307/1907187     URL    
[25] Kendall M G.Rank Correlation Measures[M]. London:Charles Griffin, 1975: 202.
[26] Sen P K.Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1 379-1 389.
doi: 10.1080/01621459.1968.10480934     URL    
[27] Guo Lingpeng, Li Lanhai.Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China[J]. International Journal of Climatology, 2015, 35(7): 1 379-1 393.
doi: 10.1002/joc.2015.35.issue-7     URL    
[28] Wei Fengying.Modern Climatic Statistical Diagnosis and Forecasting Technology[M]. Beijing: China Meteorological Press, 1999.
[魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999.]
[29] Yu Xiulin, Ren Xuesong.Multivariate Statistical Analysis[M].Beijing: China Statistics Press, 1998.
[于秀林, 任雪松. 多元统计分析[M]. 北京: 中国统计出版社, 1998.]
[30] Liu Z, Zhou P, Zhang F, et al. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China[J]. Agricultural and Forest Meteorology, 2013, (182/183): 101-108.
[31] Liu Qing’e, Wu Xiaoqing, Chen Xiaohong, et al. Temporal and spatial variation characteristics of extreme temperature in the Pearl River Basin during 1960-2012[J]. Journal of Natural Resources, 2015, 30(8): 1 356-1 366.
[刘青娥, 吴孝情, 陈晓宏, 等. 珠江流域1960—2012年极端气温的时空变化特征[J]. 自然资源学报, 2015, 30(8): 1 356-1 366.]
[32] Hurst E H.Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116: 770-808.
[33] Ray R, Khondekar M H, Ghosh K, et al. Scaling and nonlinear behaviour of daily mean temperature time series across India[J]. Chaos, Solitons & Fractals, 2016, 84: 9-14.
[34] Rehman S.Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index[J]. Chaos, Solitons & Fractals, 2009, 39(2): 499-509.
[35] Feng Xinling, Feng Zili, Luo Longcheng, et al. Fractal analysis of climate change and Hurst Index experiment in Tibetan Plateau in future[J]. Arid Land Geography, 2008,31(2) : 175-181.
[冯新灵, 冯自立, 罗隆诚, 等. 青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J]. 干旱区地理, 2008, 31(2): 175-181.]
[36] Yang Ying, Dong Guanghui, Zhao Yan, et al. Spatio-temporal variability of temperature and precipitation during 1960-2008 inferred from instrumental records in Qinghai Province, northeastern Tibetan Plateau[J]. Marine Geology Quaternary Geology, 2013, 33(4): 45-54.
[杨颖, 董广辉, 赵艳, 等. 器测记录的青海省1960—2008年气温与降水时空变化[J]. 海洋地质与第四纪地质, 2013, 33(4): 45-54.]
[37] Li Lin, Chen Xiaoguang, Wang Zhenyu, et al. Climate change and its regional differences over the Tibetan Plateau[J]. Advance in Climate Change Research, 2010, 6(3): 181-186.
[李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6(3): 181-186.]
doi: 10.3788/gzxb20103906.0998     URL    
[38] Chen Shaoyong, Guo Jiangyong, Guo Zhongxiang, et al. Discipline of temporal and spatial variation of annual mean air temperature in arid and semiarid region in Northwest China in the recent 46 years[J]. Arid Land Geography, 2009, 32(3):364-372.
[陈少勇, 郭江勇, 郭忠祥, 等. 中国西北干旱半干旱区年平均气温的时空变化规律分析[J]. 干旱区地理, 2009, 32(3): 364-372.]
[39] Huang Chengrong, He Yaping, Ma Leikai.Analysis on verification of air temperature and impact factors in Xinjiang from 1960-2009[J]. Journal of Arid Land Resources and Environment, 2012, 26(10): 7-12.
[黄成荣, 何亚萍, 马雷凯. 1960—2009年新疆气温时空变化及影响因子分析[J]. 干旱区资源与环境, 2012, 26(10): 7-12.]
[40] Qian W, Qin A.Spatial-temporal characteristics of temperature variation in China[J]. Meteorology and Atmospheric Physics, 2006, 93(1/2): 1-16.
doi: 10.1007/s00703-005-0163-6     URL    
[41] Chen Shaoyong, Wang Jinsong,Shi Yuanyuan, et al. The change of annual mean temperature in monsoon area of east China[J]. Resources Science, 2009, 31(3): 462-471.
[陈少勇, 王劲松, 石圆圆, 等. 中国东部季风区1961年~2006年年平均气温变化特征[J]. 资源科学, 2009, 31(3): 462-471.]
[42] Ren Guoyu, Chu Ziying, Zhou Yaqing, et al. Recent progresses in studies of regional temperature changes in China[J].Climatic and Environmental Research, 2005, 10(4): 701-716.
[任国玉, 初子莹, 周雅清, 等. 中国气温变化研究最新进展[J]. 气候与环境研究, 2005, 10(4): 701-716.]
[43] Wang Q, Wang M, Fan X, et al. Trends of temperature and precipitation extremes in the Loess Plateau region of China, 1961-2010[J]. Theoretical and Applied Climatology, 2012, (92/93):1-15.
[44] Liu Yongting, Xu Guanglai, Yin Zhouxiang, et al. Spatio-temporal change of surface air temperature in Anhui Province in the context of global warming from 1960 to 2014[J]. Journal of Natural Resources, 2017, 32(4): 680-691.
[刘永婷, 徐光来, 尹周祥, 等. 全球变化背景下安徽近55 a气温时空变化特征[J]. 自然资源学报, 2017, 32(4): 680-691.]
[45] Guo Qiyun, Cai Jingning, Shao Xuemei, et al. Interdecadal variability if East-Asian summer monsoon and its impact on the climate of China[J]. Acta Geographica Sinica, 2003, 58(4): 569-576.
[郭其蕴, 蔡静宁, 邵雪梅, 等. 东亚夏季风的年代际变率对中国气候的影响[J]. 地理学报, 2003, 58(4): 569-576.]
[46] Xu Zhongfeng, Qian Yongfu.Moist potential vorticity index of Indian monsoon and its relationship with climate in China[J]. Acta Meteorologica Sinica, 2006, 64(6): 760-769.
[徐忠峰, 钱永甫. 用湿位涡定义的印度夏季风指数及其与中国气候的关系[J]. 气象学报, 2006, 64(6): 760-769.]
doi: 10.11676/qxxb2006.072    
[47] Liu Lishan, Yan Junping, Li Shuangshuang.The influence of solar activity and oscillation on temperature changes in south and north Tianshan[J]. Resources Science, 2014, 36(3): 502-511.
[刘栎杉, 延军平, 李双双. 太阳活动和大气涛动对天山南北气温波动的综合影响[J]. 资源科学, 2014, 36(3): 502-511.]
[48] Ma Lijuan.The Spatiotemporal Variation of Snow Cover at the Tibetan Plateau During Recent 50 Years and the Relationship with Atmospheric Circulation[D]. Beijing: University of Chinese Academy of Sciences, 2008.
[马丽娟. 近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D]. 北京:中国科学院研究生院, 2008.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要