地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 270 -280. doi: 10.11867/j.issn.1001-8166.2018.03.0270

研究论文 上一篇    下一篇

南海西边界急流影响下的近惯性振荡特征分析
江森汇 1( ), 吴泽文 2, 舒勰俊 3   
  1. 1.广州航海学院航务工程学院,广东 广州 510725
    2.热带海洋环境国家重点实验室,中国科学院南海海洋研究所,广东 广州 510301
    3.国家海洋局南海规划与环境研究院,广东 广州 510310
  • 收稿日期:2017-11-09 修回日期:2018-02-02 出版日期:2018-03-20
  • 基金资助:
    *2017年广东省高等教育“创新强校工程”建设项目“基于ADCP观测资料的湍流应力特征及其影响机制分析”(编号:E410709)资助.

Characteristics of Near-inertial Oscillation Influenced by Western Boundary Current of South China Sea

Senhui Jiang 1( ), Zewen Wu 2, Xiejun Shu 3   

  1. 1.School of Harbor Engineering, Guangzhou Maritime University, Guangzhou 510725, China
    2.State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    3.South China Sea Institute of Planning and Environmental Research, State Oceanic Administration, People’s Republic of China, Guangzhou 510310, China;
  • Received:2017-11-09 Revised:2018-02-02 Online:2018-03-20 Published:2018-05-02
  • About author:

    First author:Jiang Senhui(1983- ), male, Taizhou City, Zhejiang Province, Lecturer. Research areas include ocean wave motion and mixing.E-mail:jiangsh_gmi@163.com

  • Supported by:
    Project supported by the Guangdong Higher Education Innovation Strong School Project “The characteristics of the turbulent stress and its influence mechanism based on the ADCP observation data”(No.E410709).

在利用南海西沙海域多年声学多普勒流速剖面仪(ADCP)观测流速资料分析近惯性内波运动的生成、传播等演变特征的过程中,发现冬季和夏季的近惯性振荡频率存在整体性的偏移效应。ADCP所处海域位于南海西边界急流区,冬季和夏季的背景环流分别为东北向和西南向,背景环流的方向性差异可能影响近惯性振荡频率的偏移效应。针对背景环流的不同方向,筛选出其对应的近惯性振荡信号,进行合成分析,探讨南海西边界急流如何影响近惯性振荡特征。从背景涡度的角度对这一影响机制做出了解释:夏季时,东北方向背景环流的水平剪切使得局地产生负的背景涡度,近惯性振荡频率往低频方向偏移(“红移”现象);冬季时,西南向背景环流的水平剪切导致局地产生正的背景涡度,近惯性振荡频率往高频方向偏移(“蓝移”现象)。

Based on observed velocity data of ADCP for near-inertial wave evolution characteristics of generation and propagation, the difference of shifting effect was found in winter and summer. The background circulation in winter and summer is northeast and southwest, respectively. The diversity of the background flow directions may take an important part in shifting effect of the near-inertial wave motion. According to the different directions of the background circulation, the signals of near-inertial oscillation were screened out and analyzed by synthesis for discussing how the directions of background circulation affected the characteristics of near-inertial oscillation. The mechanism of this effect was explained from the perspective of background vorticity: As the direction of background circulation is the northeast, the background vorticity becomes negative and the effective frequency decreases, the near-inertial oscillation frequency shifts to low frequency band (red shift); contrarily, the background vorticity becomes positive and the effective frequency increases with the southwest background circulation, the near-inertial oscillation frequency shifts to high frequency band (blue shift).

中图分类号: 

图1 潜标位置及台风路径
红色“★”代表潜标观测系统的投放位置,紫色线表示2007—2013年,过境南海西沙海域的热带气旋的行进路径,包括从西太平洋穿过菲律宾进入南海的和南海局地生成的热带气旋
Fig.1 A map of the ADCP mooring station and typhoons’ track
Location of the ADCP mooring station is marked by a red pentagram.Typhoons’ track are labeled by purple full line
表1 潜标系统搭载的ADCP(75 kHz)观测数据概况
Table 1 The survey of data observed by the ADCP mooring system
图2 2007—2013年近惯性动能及其标准差
蓝色实线表示观测水深公共段(50~250 m)垂向平均的近惯性振荡动能,其他实线是各观测时间段内各自的垂向平均近惯性振荡动能;“8.7”代表2007—2013年整体观测资料的3倍标准差值,以此来确定近惯性振荡发生的具体时间段;由于观测水深的原因,舍弃了2010年9月至2011年8月的观测数据
Fig.2 Depth-averaged near-inertial kinect energy and its standard deviation from 2007 to 2013
The blue line represents the depth-averaged near-inertial kinect energy of the common water depth from 50 to 250 meters, and the lines with other color are of each observation period. The standard deviation of common water depth from 50 to 250 m is 8.7 J. The observation data of the period from September 2010 to Augast 2011 are abandoned due to deeper observation water depth
表2 观测时间段内冬、夏季台风信息及其对应的近惯性振荡
Table 2 Near-inertial oscillations corresponding to typhoons during the observation period in winter and summer
图3 垂向平均背景环流和近惯性流速分布
左图是夏季时的分布,右图是冬季时的分布;保留1个月以上周期的海流运动作低通滤波,获得背景环流;采用带通滤波器,从流速观测资料中提取近惯性振荡信号,滤波频段设定为0.8~1.2 f;红色线段表示垂向平均背景环流流速分布,红色实线(粗)代表背景环流流速东分量,红色虚线(细)表示背景环流流速北分量;蓝色线段表示近惯性振荡垂向平均流速分布,蓝色实线(粗)表示近惯性振荡流速东分量,蓝色虚线(细)表示近惯性振荡流速北分量
Fig.3 A diagram of depth-averaged background circulation and near-inertial current
The background circulation is obtained by low pass filter, and the near-inertial current is achieved by bandpass filter (0.8~1.2 f) from observation data. The red line represents the depth-averaged background circulation, including east component (coarse) and north component (fine). The blue line represents depth-averaged near-inertial current, including east component (coarse) and north component (fine).The left picture show the season of summer, and the right is winter
图4 不同方向背景流速下的合成能量功率谱及其沿水深变化
(a)速度能量谱随频率变化情况;(b)夏季时速度能量谱随水深和频率的变化规律;(c)冬季时速度能量谱随水深和频率的变化规律
Fig.4 A diagram of synthetic energy spectrum and its variation along water depth in different direction background circulations
(a)Synthetic energy spectrum under background circulations of two directions, the red line represents east component of background circulation, the blue line is the north component, and the black lines represents local inertial frequency, diurnal tide (K1 and O1) and semidiurnal tide (M2 and S2) frequency. Energy spectrum’s variation along water depth in summer and (b) in winter (c)
图5 能量旋转功率谱分布
红色实线表示东北向背景环流下的顺时针旋转功率谱;红色虚线表示东北向背景环流下的逆时针旋转功率谱;蓝色实线表示西南向背景环流下的顺时针旋转功率谱;蓝色虚线表示西南背景环流下的逆时针旋转功率谱
Fig.5 A diagram of energy rotation power spectrum
The red lines represent rotation power spectrum under the northeast background circulation, including the clockwise component (solid line) and counterclockwise component (dotted line). The blue lines represent rotation power spectrum under the southwest background circulation, including the clockwise component (solid line) and counterclockwise component (dotted line)
[1] Alford M H, Maya W.Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records[J]. Journal of Physical Oceanography, 2007, 37(8): 2 022-2 037.
doi: 10.1175/JPO3106.1     URL    
[2] Alford M H, Meghan F C, Jody M K.Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station papa in the Northeast Pacific[J]. Journal of Physical Oceanography, 2012, 42(6): 889-909.
doi: 10.1175/JPO-D-11-092.1     URL    
[3] Rossby C G.On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II[J]. Journal of Marine Research, 1938, 1(3): 239-263.
doi: 10.1357/002224038806440520     URL    
[4] Gill A E.Atmosphere-Ocean Dynamics[M]. New York: Academic Press, 1982:258-260.
[5] Van Aken H M, Maas L R M, van Haren H. Observations of inertial wave events near the continental slope off Goban Spur[J]. Journal of Physical Oceanography, 2005, 35(8): 1 329-1 340.
doi: 10.1175/JPO2769.1     URL    
[6] MacKinnon J A, Winters K B. Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°[J]. Geophysical Research Letters,2005, 32(15). DOI:10.1029/2005GL023376.
[7] Van Haren.Longitudinal and topographic variations in North Atlantic tidal and inertial energy around latitudes 30±10°N[J]. Journal of Geophysical Research, 2005, 112(C10).DOI:10.1029/2007JC004193.
[8] Xie X, Chen G, Shang X, et al. Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea[J]. Geophysical Research Letters, 2008, 35(13).DOI:10.1029/2008GL034179.
[9] Holloway P E, Chatwin P G, Graig P.Internal tide observations from the Australian North West shelf in summer 1995[J]. Journal of Physical Oceanography, 2001, 31(5): 1 182-1 199.
doi: 10.1175/1520-0485(2001)031<1182:ITOFTA>2.0.CO;2     URL    
[10] Munk W, Wunsch C.Abyssal recipes II, energetic of tidal and wind mixing[J]. Deep-Sea Research Part I: Oceanogaphic Research Papers, 1998, 45(12): 1 977-2 010.
[11] Cary D T, Sultan A, Nathan H, et al. Cross-shelf thermal variability in southern Lake Michigan during the stratified periods[J]. Journal of Geophysical Research, 2012, 117(C2).DOI:10.1029/2011JC007148.
[12] Mackinnon J A, Gregg M C.Shear and baroclinic energy flux on the summer New England shelf[J]. Journal of Physical Oceanography, 2003, 33(7): 1 462-1 475.
doi: 10.1175/1520-0485(2003)033<1462:SABEFO>2.0.CO;2     URL    
[13] Zhang Shuwen, Cao Ruixue, Xie Lingling.Upper ocean near-inertial oscillations and dispersion relation in the course of tropical cyclone[J]. Advances in Marine Sciences, 2013, 31(1): 38-42.
[张书文, 曹瑞雪, 谢玲玲. 热带气旋过程中的近惯性振荡解及频散关系[J]. 海洋科学进展, 2013, 31(1): 38-42.]
[14] Kunze E.Near-inertial wave propagation in geostrophic shear[J]. Journal of Physical Oceanography, 1985, 15(5): 544-565.
doi: 10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2     URL    
[15] Kunze E, Schmitt R W, Toole J M.The energy balance in a warm-core ring’s near-inertial critical layer[J]. Journal of Physical Oceanography, 1995, 25(5): 942-957.
doi: 10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2     URL    
[16] Guan Shoude.Near Inertial Oscillations in the Northern South China Sea[D]. Qingdao: Ocean University of China, 2014.
[管守德. 南海北部近惯性振荡研究[D]. 青岛:中国海洋大学, 2014.]
[17] Sun L, Zheng Q, Tang T, et al. Upper ocean near-inertial response to 1998 typhoon Faith in the South China Sea[J]. Acta Oceanologica Sinica, 2012, 31(2): 25-32.
doi: 10.1007/s13131-012-0189-9     URL    
[18] Yang B, Hou Y.Near-inertial waves in the wake of 2011 typhoon Nesat in the northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(1): 102-111.
[19] Chen G, Xue H, Wang D, et al. Observed near-inertial kinetic energy in the northwestern South China Sea[J]. Journal of Geophysical Research, 2013, 118(10): 1-13.
[20] Mao Huabin, Chen Guiying, Shang Xiaodong, et al. Interaction between internal tides and near-inertial waves at Xisha area[J]. Chinese Journal of Geophysics, 2013,56(2):592-600.
[毛华斌, 陈桂英, 尚晓东, 等. 西沙海域内潮与近惯性内波的相互作用[J]. 地球物理学报, 2013, 56(2): 592-600.]
doi: 10.6038/cjg20130222    
[21] Chu P, Veneziano J M, Fang C, et al. Response of the South China Sea to tropical cyclone Ernie 1996[J]. Journal of Geophysical Research, 2000, 105(C6): 13 991-14 009.
doi: 10.1029/2000JC900035     URL    
[22] Jiang X, Zhong Z, Jiang J.Upper ocean response of the South China Sea to typhoon Krovanh(2003)[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 165-175.
doi: 10.1016/j.dynatmoce.2008.09.005     URL    
[23] Fang G, Fang W, Fang Y, et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanographica Taiwanica, 1998, 37: 1-16.
[24] Qian Qifeng, Jiang Jing.Estimating the energy flux from the tropical cyclones to ocean near-inertial motions[J]. Journal of Tropical Meteorology, 2012,28(4):471-477.
[钱奇峰, 江静. 由热带气旋进入海洋近惯性运动能量的估计[J]. 热带气象学报, 2012, 28(4): 471-477.]
[25] Leaman K, Sanford T.Vertical energy propagation of inertial waves: Avector spectral analysis of velocity profiles[J]. Journal of Geophysical Research, 1975, 80(15): 1 975-1 978.
doi: 10.1029/JC080i015p01975     URL    
[26] Sanford T B.Spatial structure of thermocline and abussal internal waves[C]∥Dynamics of Ocean Internal Gravity Waves II: ‘Aha Huliko’ A Hawaiian Winter Workshop. Manoa: University of Hawaii, 1991: 109-142.
[27] Li Li, Wu Risheng, Guo Xiaogang.Seasonal circulation in the South China Sea—A Topex/Poseidon satellite altimetry study[J]. Acta Oceanologica Sinica, 2000, 22(6): 13-26.
[李立, 吴日升, 郭小刚. 南海的季节环流——TOPEX/POSEIDON卫星测高应用研究[J]. 海洋学报, 2000, 22(6): 13-26.]
[28] Liao Guanghong, Yuan Yaochu, Xu Xiaohua.The three dimensional structure of the circulation in the South China Sea during the winter of 1998[J]. Acta Oceanologica Sinica, 2005, 27(2): 8-17.
[廖光洪, 袁耀初, 徐晓华. 1998年冬季南海环流的三维结构[J]. 海洋学报, 2005, 27(2): 8-17.]
[29] Liu Yonggang, Yuan Yaochu, Su Jilan, et al. The circulation in the South China Sea during the summer of 1998[J]. Chinese Science Bulletin, 2000, 45(12): 1 252-1 259.
[刘勇刚, 袁耀初, 苏纪兰, 等. 1998年夏季南海环流[J]. 科学通报, 2000, 45(12): 1 252-1 259.]
[30] Xu Jindian, Li Li, Guo Xiaogang, et al. Multi-eddy features of South China Sea circulation around onset of summer monsoon in 1998[J]. Journal of Tropical Oceanography, 2001,20(1): 44-51.
[许金电, 李立, 郭小刚,等.1998年夏季季风爆发前后南海环流的多涡特征[J].热带海洋学报,2001,20(1):44-51.]
[31] Chern C S, Wang J.Numerical study of the upper-layer circulation in the South China Sea[J]. Journal of Oceanography, 2003, 59(1): 11-24.
doi: 10.1023/A:1022899920215     URL    
[32] Fang G, Susanto D, Qiao F, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946-954.
doi: 10.1007/BF02918693     URL    
[33] Yang Bo, Zhao Jinping, Cao Yong, et al. Study of regional ocean circulation numerical model and simulation of the South China Sea circulation and water transport through straits[J]. Advances in Marine Sciences, 2004, 22(4): 405-416.
[杨波, 赵进平, 曹勇, 等. 区域性海洋环流数值模式研究及对南海环流与海峡流量的模拟[J]. 海洋科学进展, 2004, 22(4): 405-416.]
[34] Yu Z, Shen S, McCreary J, et al. South China Sea throughflow as evidenced by satellite images and numerical experiments[J]. Geophysical Research Letters, 2007, 34.DOI:10.1029/2006GL028103.
[35] Joseph G.Arotary-component method for analyzing meteorological and oceanographic vector time series[J]. Deep-Sea Research and Oceanograhic Abstracts, 1972, 19(12): 833-846.
doi: 10.1016/0011-7471(72)90002-2     URL    
[36] Sun L, Zheng Q, Wang D, et al. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data[J]. Journal of Oceanography, 2011, 67(6): 677-687.
doi: 10.1007/s10872-011-0081-9     URL    
[37] Kevin D L, Thomas B S.Vertical energy propagation of inertial waves: Avector spectral analysis of velocity profiles[J]. Journal of Geophysical Research, 1975, 80(15): 1 975-1 978.
doi: 10.1029/JC080i015p01975     URL    
No related articles found!
阅读次数
全文


摘要