地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 257 -269. doi: 10.11867/j.issn.1001-8166.2018.03.0257

研究论文 上一篇    下一篇

基于航磁数据的三维地质建模研究
侯征 1( ), 王天意 1, 于长春 2, 熊盛青 2, 邸龙 1   
  1. 1. 河北地质大学勘查技术与工程学院,河北 石家庄 050031
    2.中国国土资源航空物探遥感中心,北京 100083
  • 收稿日期:2017-10-10 修回日期:2017-12-25 出版日期:2018-03-20
  • 基金资助:
    *国家重点研发计划项目“综合航空物探地球物理探测系统集成方法技术研究”(编号:2017YFC0602201);河北地质大学博士科研启动基金项目“基于三维地质建模的深部矿致异常信息提取方法研究”(编号:BQ2017055)资助.

Study of 3D Geological Modeling Based on Aeromagnetic Data

Zheng Hou 1( ), Tianyi Wang 1, Changchun Yu 2, Shengqing Xiong 2, Long Di 1   

  1. 1.School of Exploration Technology and Engineering, Hebei GEO University, Shijiazhuang 050031, China
    2.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
  • Received:2017-10-10 Revised:2017-12-25 Online:2018-03-20 Published:2018-05-02
  • About author:

    First author:Hou Zheng(1980-),male, Hohhot City, Inner Mongolia, Lecturer. Research areas includ the aeromagnetic data processing and interpretation, geophysical nonlinear joint inversion.E-mail:hou_zheng@163.com

  • Supported by:
    Project supported by the National Key R & D Project Sub Project “Research on integrated method and technology of integrated geophysical exploration system for Aero geophysical exploration”(No.2017YFC0602201);HeBei GEO University Scientific Research Fund of Doctoral “Extracting technology of deep mine abnormal information based of 3D geological modeling”(No.BQ2017055).

随着浅地表矿床发现的难度增大,资源勘查深度增加,三维建模技术在深部找矿中作用更加突出。三维地质模型的精确程度直接决定了对地质背景及成矿条件的认知程度,为此提出了一套基于航磁资料处理与三维可视化相结合的三维地质建模技术。对研究区选取适当剖面进行二维反演,获得各剖面地质模型。通过剖面相连法构建各地质单元的三维地质模型后,引入起伏地形三维块体磁场正演技术,对构建的三维初始模型正演计算,从而获取全区三维地质模型及各地质单元的航磁异常理论响应。与实测结果对比分析后,合理添加地质约束条件,重新修正模型,使得构建的模型最大程度接近实际情况,这样模型既能很好地反映地质信息,又能满足观测场与理论场的拟合误差最小,最大限度发挥地质学家的经验和对区域地质的理解。利用主块体和次级块体思想对地质体进行剖分建模,在保证模型精度的同时,减少总的模型块体个数,大幅提高模型正演运算速度,有效解决三维反演建模方法在建模过程中对模型复杂度和规模的限制,可方便构建形态复杂、不同规模的三维地质模型。并将该方法应用于湖北大冶铁矿区,构建大冶铁矿研究区三维地质模型,验证了该方法的可行性及合理性。

With the increasing difficulty of finding the shallow surface deposit and the increasing depth of resources exploration, three-dimensional modeling technology is more apparent in deep prospecting, and its accuracy directly determines the cognitive degree of geological body and metallogenic condition. For this, we put forward a set of the extraction technology of abnormal information combined with aeromagnetic data processing with three-dimensional geological modeling. Inversing the selected profile of the study area and obtaining each profile geological model, we built three-dimensional geological model of geological units by the method of profile linked, using undulating terrain three-dimensional block magnetic field forward techniques to model the three-dimensional geological model of the whole area, and obtained the forward modeling results of the whole three-dimensional geological model and the geological unit. After the comparative analysis with the test result, adding reasonable geological constraints and revising model, through adjusting for many times, we made the model maximum close to the actual situation. The model can well reflect the geological information and make minimum fitting error of observations and theoretical field, with which geologists can use the most of their experience and get more regional geological understanding. Using the thought of main block and secondary block to subdivision modeling of geological body, on the condition of ensuring the accuracy of model, the number of the total model block decreased and the multi-window and multi-geological body parallel computing method were used to improve the modeling speed, effectively solve the limitation problem of the model complexity in the process of the three-dimensional inversion modeling method, and easily form complex and different sizes three-dimensional geological model. We applied this method to the Hubei Daye area, constructed the three-dimensional geological model of Daye Iron Mine, and verified the feasibility and rationality of this method.

中图分类号: 

图1 长方体模型解析 “奇点”示意图
Fig.1 Analytic singularity of the cuboid model
图2 长方体组合模型示意图
Fig.2 Sketch map of cuboid combination model
图3 曲面上观测点与模型单元空间关系示意图
Fig.3 Spatial relation between observation points on curved surface and model unit
图4 观测点位于块体上方时模型示意图及正演计算结果
(a) 模型1和模型2示意图;(b) 模型1正演计算结果;(c)模型2正演计算结果
Fig.4 The model sketch and forward calculation results of observation point above the block
(a)Schematic diagram of model 1 and model 2; (b)Forward calculation results of model 1; (c)Forward calculation results of model 2
图5 观测点位于块体下方时模型示意图及正演计算结果
(a)模型单元与观测剖面示意图; (b)剖面1和剖面2正演计算结果; (c)改正后剖面1和剖面2正演计算结果
Fig.5 The model sketch and forward calculation results of observation point below the block
(a) Schematic diagram of model unit and observation section; (b)Forward calculation results of section 1 and section 2;(c)Forward calculation results after correction of section 1 and section 2
图6 岩体实体模型
Fig.6 Solid model of rock mass
图7 三级剖分块体模型及参数
Fig.7 Three stage split block model and parameters
表1 试验模型参数
Table 1 Test model parameters
图8 试验模型
Fig.8 Test model
图9 试验模型正演结果
(a)模型1正演结果;(b)模型2正演结果;(c)模型1减去模型2结果;(d)矿体正演结果
Fig.9 Forward results of test model
(a)Forward results of model 1;(b)Forward results of model 2;(c)Forward results of model 1 minus model 2;(d)Forward results of orebody
图10 湖北大冶铁矿研究区地质简图
1.含石英闪长斑岩;2.透辉石闪长岩;3.闪长岩;4.粗斑含石英闪长斑岩;5.巨斑状闪长岩;6.黑云母透辉石闪长岩;7.斑状花岗闪长岩;8.第四系;9.三叠系灰岩;10.二叠系地层;11.废石堆
Fig.10 Geology map of Daye iron ore
1:Quartz diorite porphyry; 2:Diopside diorite; 3:Diorite; 4:Coarse stain quartz diorite porphyry; 5:Porphyritic diorite; 6:Biotite diopside diorite; 7:Porphyritic granodiorite; 8:Quaternary; 9:Triassic limestone; 10:Permian strata; 11:Waste dumps
表2 研究区岩(矿)石磁性参数统计表
Table 2 The results of rock (ore) magnetic susceptibility
图11 P11剖面反演结果
1.推断矿体;2.含石英闪长斑岩;3. 闪长岩;4. 黑云母透辉石闪长岩;5. 大理岩;6.采空区;7. 观测曲线;8. 计算曲线;9. 飞行高度线;10. 地形线;11. 模型体序号
Fig.11 P11 profile inversion results
1. Inferred orebody; 2:Quartz diorite porphyry; 3:Diorite; 4:Biotite diopside diorite; 5:Griotte; 6:Goaf; 7:Observation curve;8:Computed curve; 9:Flight line; 10:Topographic line; 11:Model body serial number
表3 P11剖面反演模型物性参数表
Table 3 Physical property parameter list of P11 profile inversion model
图12 实测结果与三维地质初始模型正演△ T等值线平面图
(a) 实测△ T结果; (b) 三维地质初始模型正演△ T结果
Fig.12 The △ T contour plane graph of measured results and forward with the 3D geological initial model
(a) The measured results of △ T; (b) The 3D geological initial model forward results of △ T
图13 研究区三维地质模型
(a)三维地质模型与△ T立体图;(b)实测△ T结果;(c)修正后模型后正演△ T结果; 1.大理岩;2.含石英闪长斑岩;3.黑云母透辉石闪长岩;4.闪长岩;5.透辉石闪长岩;6.斑状花岗闪长岩;7.矿体
Fig.13 3D geological model of the study area
(a) 3D geological model and △ T value; (b) The measured results of △ T; (c) The modified model forward results of △ T; 1:Griotte; 2:Quartz diorite porphyry; 3:Biotite diopside diorite; 4:Diorite; 5:Diopside diorite; 6:Porphyritic granodiorite; 7:Orebody
[1] Dhont D, Monod B, Hervouet Y, et al. 3D geological modeling of the Trujillo Block: Insights for crustal escape models of the Venezuelan Andes[J]. Journal of South American Earth Sciences, 2012,39:245-251.
doi: 10.1016/j.jsames.2012.04.003     URL    
[2] Li Qingyuan, Zhang Luoyi, Cao Daiyong, et al. Usage, status, problems, trends and suggestions of 3D geological modeling[J]. Geology and Exploration,2016,52(4):759-767.
[李青元,张洛宜,曹代勇,等.三维地质建模的用途、现状、问题、趋势与建议[J].地质与勘探, 2016,52(4):759-767.]
URL    
[3] Alireza Malehmir, Hans Thunehed, Ari Tryggvason.The Paleoproterozoic Kristineberg mining area, Northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits[J]. Geophysics, 2009,74(1):9-22.
doi: 10.1190/1.3008053     URL    
[4] Ford A, Blenkinsop T G, et al.Evaluating geological complexity and complexity gradients as controls on copper mineralization, Mt Inlier[J]. Australian Journal of Earth Sciences,2008,55: 12-23.
doi: 10.1080/08120090701581364     URL    
[5] Gao Yanhong, Zhou Yunxuan, Liu Wansong.A preliminary study of geophysical field modeling visualization[J]. Journal of Chang Chun University of Science and Technology,2000,30(2):185-189.
[郜延红,周云轩,刘万崧.地球物理位场可视化建模初步探讨[J].长春科技大学学报,2000,30(2):185-189.]
doi: 10.3969/j.issn.1671-5888.2000.02.018     URL    
[6] Martelet G, Calcagno P, Gumiaux C, et al. Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area(sourth Brittany, France)[J].Tectonophysics, 2004, 382(1/2):117-128.
doi: 10.1016/j.tecto.2003.12.009     URL    
[7] Yu Changchun, Fan Zhengguo, Wang Naidong, et al. High-resolution aeromagnetic exploration methods and their application in daye iron mines[J]. Progress in Geophysics,2007,22(3):979-983.
[于长春,范正国,王乃东,等.高分辨率航磁方法在大冶铁矿区的应用[J].地球物理学进展,2007,22(3):979-983.]
doi: 10.3969/j.issn.1004-2903.2007.03.048     URL    
[8] Xiong Shengqing, Yu Changchun, Wang Weiping, et al. Large scale aero geophysical survey with helicopter and its application to deep ore prospecting[J]. Advances in Earth Science, 2008,23(3):270-274.
[熊盛青,于长春,王卫平,等.直升机大比例尺航空物探在深部找矿中的应用前景[J].地球科学进展,2008,23(3):270-274.]
doi: 10.3321/j.issn:1001-8166.2008.03.007     URL    
[9] Fan Junchang, Mao Xiancheng, Zhao Ying, et al. Voxel model and its magnetic forward model of stereoscopic prediction of concealed ore body[J]. The Chinese Journal of Nonferrous Metals,2012,22(1):239-250.
[樊俊昌,毛先成,赵莹,等.隐伏矿体立体预测的体元模型及其磁法正演模型[J].中国有色金属学报,2012,22(1):239-250.]
URL    
[10] Qi Guang, Lü Qingtian, Yan Jiayong, et al. Geologic constrained 3D gravity and magnetic modeling of modeling of Nihe deposit—A case study[J]. Chinese Journal of Geophysics, 2012,55(12):4 194-4 206.
[祁光,吕庆田,严加永,等.先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J].地球物理学报, 2012,55(12):4 194-4 206.]
doi: 10.6038/j.issn.0001-5733.2012.12.031     URL    
[11] Zhu Song, Xiao Keyan.Three-dimensional geologic modeling and deep ore body prospecting of Tieshan iron deposit of Daye iron ore district[J]. Mineral Deposits,2015,34(4):814-827.
[祝嵩,肖克炎. 大冶铁矿田铁山矿区三维地质体建模及深部成矿预测[J].矿床地质,2015,34(4):814-827.]
doi: 10.16111/j.0258-7106.2015.04.011     URL    
[12] Xiang Jie, Chen Jianping, Hu Bin, et al. 3D metallogenic prediction based on 3D geological-geophysical model: A case study in Tongling mineral district of Anhui[J]. Advances in Earth Science, 2016,31(6):603-614.
[向杰,陈建平,胡彬,等.基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J].地球科学进展,2016,31(6):603-614.]
doi: 10.11867/j.issn.1001-8166.2016.06.0603     URL    
[13] Gao Le, Lu Yutong, Yu Pengpeng, et al. Three-dimensional visualization and quantitative prediction for mine: A case study in Xiayuandong Pb-Zn ore deposits,Pangxidong region,southern part of Qin-Hang metallogenic belt,China[J]. Acta Petrologica Sinica,2017,33(3): 767-778.
[高乐,卢宇彤,虞鹏鹏,等.成矿区三维可视化与立体定量预测——以钦—杭成矿带庞西垌地区下园铅锌矿区为例[J].岩石学报, 2017,33(3): 767-778.]
[14] Wu Zhichun, Guo Fusheng, Lin Ziyu, et al. Technology and method of multi-data merging in 3D geological modeling[J]. Journal of Jilin University (Earth Science Edition),2016,46(6): 1 895-1 913.
[吴志春,郭福生,林子瑜,等.三维地质建模中的多源数据融合技术与方法[J].吉林大学学报:地球科学版, 2016,46(6): 1 895-1 913.]
doi: 10.13278/j.cnki.jjuese.201606308     URL    
[15] Lü Qingtian . Resource Exploration must go Deep into the Earth[N]. China Landand Resources News, 2016-09-18.
[吕庆田. 资源勘查必须走向地球深部[N].中国国土资源报,2016-09-18.]
[16] Guo Zhihong, Guan Zhining, Xiong Shengqing.Cuboid ΔT and its gradient forward theoretical expressions without analytic odd points[J]. Chinese Journal of Geophysics, 2004, 47(6):1 131-1 138.
[郭志宏,管志宁,熊盛青.长方体ΔT场及其梯度场无解析奇点理论表达式[J].地球物理学报, 2004, 47(6):1 131-1 138.]
doi: 10.3321/j.issn:0001-5733.2004.06.029     URL    
[17] Xue Linfu, Li Wenqing, Zhang Wei, et al. A method of block-divided 3d geologic modeling in regional scale[J]. Journal of Jilin University (Earth Science Edition), 2014,44(6):2 051-2 058.
[薛林福,李文庆,张伟,等.分块区域三维地质建模方法[J].吉林大学学报:地球科学版, 2014,44(6):2 051-2 058.]
doi: 10.13278/j.cnki.jjuese.201406305     URL    
[18] Zhang Baoyi, Yang Li, Chen Xiaoyang, et al. Regional metallogenic geo-bodies 3D modeling and mineral resource assessment based on geologic map cut cross-sections:A case study of manganese deposits in southwestern Guangxi, China[J]. Journal of Jilin University (Earth Science Edition),2017,47(3):933-948.
[张宝一,杨莉,陈笑扬,等.基于图切地质剖面的区域成矿地质体三维建模与资源评价:以桂西南地区锰矿为例[J].吉林大学学报:地球科学版,2017,47(3):933-948.]
doi: 10.13278/j.cnki.jjuese.201703307     URL    
[19] Liu Yucheng, Yang Yihua, Wang Yongji.Ore-controlling structures and orientation prognosis of deep concealed ores in the Daye iron mine[J].Geology and Prospecting, 2006,42(6):10-16.
[刘玉成,杨艺华,王永基.大冶铁矿控矿构造研究及深部隐伏矿体定位预测[J].地质与勘探,2006,42(6):10-16.]
[20] Yu Changchun, Xiong Shengqing, Liu Shiyi, et al. An ore discovery example of deep prospecting by helicopter aero magnetic survey in the Daye iron mine[J]. Geophysical and Geochemical Exploration, 2010,34(4):435-439.
[于长春,熊盛青,刘士毅,等.直升机航磁方法在大冶铁矿区深部找矿中的见矿实例[J].物探与化探,2010,34(4):435-439.]
[1] 唐子剑, 康明, 李军. 基于勘探工程位置建模方法和储量估算[J]. 地球科学进展, 2017, 32(8): 839-849.
[2] 侯征, 于长春, 吴彦旺, 熊盛青, 郭鸿军, 贾琦. 新疆和田南部地区岩石磁化率变化特征研究[J]. 地球科学进展, 2016, 31(5): 481-493.
[3] 钟锴;徐鸣洁;王良书;丁增勇;徐震. 利用航磁、重力资料研究川滇地区大陆变形特征[J]. 地球科学进展, 2005, 20(10): 1089-1094.
阅读次数
全文


摘要