地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 248 -256. doi: 10.11867/j.issn.1001-8166.2018.03.0248

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

青藏铁路沿线天然场地多年冻土变化
孙志忠( ), 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊   
  1. 中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2017-12-11 修回日期:2018-02-06 出版日期:2018-03-20
  • 基金资助:
    *国家自然科学基金面上项目“青藏高原多年冻土区路基下融化夹层水热过程观测与模拟研究”(编号:41571064);国家自然科学基金重点项目“青藏高速公路修筑对冻土工程走廊的热影响及环境效应”(编号:41630636)资助.

Permafrost Change Under Natural Sites Along the Qinghai-Tibet Railway During the Years of 2006-2015

Zhizhong Sun( ), Wei Ma, Yanhu Mu, Yongzhi Liu, Shujuan Zhang, Honglei Wang   

  1. State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2017-12-11 Revised:2018-02-06 Online:2018-03-20 Published:2018-05-02
  • About author:

    First author:Sun Zhizhong(1974-), male, Qingyuan County, Liaoning Province, Associate professor. Research areas include environment and engineering in cold regions.E-mail:sun@lzb.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Observation and simulation study on water-heat process of thawed interlayer under the embankment in permafrost regions”(No.41571064) and “Thermo-mechanical influences and environmental effects of the Qinghai-Tibet Expressway’s building on the permafrost engineering corridor” (No.41630636).

基于青藏铁路沿线30个天然场地2006—2015年地温观测资料,对多年冻土天然上限(以下称冻土上限)及其变化、不同深度冻土地温及其变化进行分析,研究了近期多年冻土时空变化特征。观测结果表明,冻土上限为0.88~9.14 m,平均为3.54 m。在冻土上限下降的场地中,冻土上限下降幅度为0.05~2.22 m,平均为0.51 m;冻土上限下降速率为0.01~0.25 m/a,平均为0.07 m/a。高温冻土区冻土上限下降幅度与下降速率分别大于低温冻土区的0.47 m与0.06 m/a。总体而言,冻土上限附近和15 m深度地温呈上升趋势。其中,冻土上限附近地温升温幅度为0.01~0.60 ℃,平均为0.16 ℃;冻土上限附近地温升温速率为0.001~0.067 ℃/a,平均为0.018 ℃/a。低温冻土区上限附近地温升温幅度与升温速率分别大于高温冻土区0.12 ℃和0.014 ℃/a。15 m深度地温升温幅度为0.01 ~0.48 ℃,平均为0.10 ℃,15 m深度地温升温速率为0.002~0.054 ℃/a,平均为0.011 ℃/a。低温冻土区15 m深度地温升温幅度和升温速率分别大于高温冻土区0.11 ℃和0.012 ℃/a。个别观测场地受局地因素影响,出现了冻土上限抬升和冻土地温下降的情形。

Permafrost changes under natural sites along the Qinghai-Tibet Railway were investigated based on the ground temperature monitored from the year of 2006 to 2015. Among these sites, mean permafrost table was 3.54 m, with a range of 0.88 to 9.14 m. Among the sites with decreasing permafrost table, mean decreasing amplitude of permafrost table was 0.51 m, with a range of 0.05 to 2.22 m; mean decreasing rate of permafrost table was 0.07 m/a, with a range of 0.01 to 0.25 m/a. Decreasing amplitude and decreasing rate of permafrost table in high temperature regions were 0.47 m and 0.06 m/a greater than those in low temperature regions, respectively. In general, ground temperatures at permafrost table and 15 m depth presented rising tendency. Mean rising amplitude of ground temperature at permafrost table was 0.16 ℃, with a range of 0.01 to 0.60 ℃; mean rising rate of ground temperature at permafrost table was 0.018 ℃/a, with a range of 0.001 to 0.067 ℃/a. Rising amplitude and rising rate of ground temperature at permafrost table in low temperature regions were 0.12 ℃ and 0.014 ℃/a greater than those in high temperature regions, respectively. Mean rising amplitude of ground temperature at 15 m depth was 0.10 ℃, with a range of 0.01 to 0.48 ℃; mean rising rate of ground temperature at 15 m depth was 0.011 ℃/a, with a range of 0.002 to 0.054 ℃/a. Rising amplitude and rising rate of ground temperature at 15 m depth in low temperature regions were 0.11 ℃ and 0.012 ℃/a greater than those in high temperature regions, respectively. Due to the effect of local factors, increasing of permafrost table and decreasing of ground temperature were observed under several sites.

中图分类号: 

表1 青藏铁路沿线天然场地基本信息
Table 1 Basic information of natural sites along the Qinghai-Tibet Railway
编号 地名 经度(E) 纬度(N) 高程/m 孔深/m 冻土特征
冻土
类型
年平均
地温/℃
冻土
上限/m
P2 昆仑山 94°03.081' 35°37.020' 4 757 18 D -3.17 1.9
P3 不冻泉 93°57.795' 35°33.109' 4 636 18 D -0.50 2.5
P4 斜水河南 93°43.561' 35°30.132' 4 547 18 F,D -0.75 1.0
P6 高平原区 93°26.776' 35°21.839' 4 507 40 D,B,F -1.50 2.9
P7 高平原区 93°26.678' 35°21.819' 4 504 18 D,B -1.14 3.2
P8 楚玛尔河南 93°13.308' 35°16.648' 4 589 18 S,D -0.50 5.0
P10 五道梁盆地 93°06.678' 35°12.258' 4 613 15 D,B,H -1.70 1.8
P12 可可西里 93°02.521' 35°08.303' 4 734 40 D,F,H -2.40 0.9
P15 红梁河北 93°01.694' 35°04.066' 4 675 18 D,F,H -1.28 2.3
P16 风火山南坡 92°53.914' 34°40.346' 4 894 20 F,B,D -2.00 1.7
P17 二道沟 92°46.939' 34°36.625' 4 715 18 B,D -0.65 4.0
P18 雅玛尔河 92°44.608' 34°34.532' 4 654 18 F,D -0.50 3.3
P19 雅玛尔河 92°43.841' 34°31.697' 4 616 18 D -0.24 6.2
P20 乌丽盆地 92°43.568' 34°28.667' 4 587 16 F -0.50 3.1
P22 乌丽盆地 92°43.568' 34°28.645' 4 587 16 F -0.54 5.2
P25 开心岭 92°20.386' 34°00.675' 4 672 18 H,F,D -0.74 2.4
P27 开心岭 92°20.384' 33°57.347' 4 622 40 F,H -0.80 2.9
P29 开心岭 92°20.369' 33°55.842' 4 622 20 F -0.80 3.4
P30 布曲河阶地 92°14.064' 33°46.399' 4 640 40 B,D -0.46 2.7
P31 布曲河阶地 92°12.272' 33°45.699' 4 647 18 D,F -0.05 8.0
P32 100道班洼地 91°56.334' 33°28.094' 4 778 18 D -0.12 4.8
P33 老温泉南部 91°56.752' 33°23.874' 4 817 18 F,D -0.40 3.4
P34 七里河北侧 91°52.547' 33°18.325' 4 841 18 F 0.27 5.0
P35 唐古拉北坡 91°48.292' 33°05.315' 4 948 18 B,F,D 0 4.5
P36 唐古拉北坡 91°45.164' 33°04.292' 4 974 15 B,F -0.90 2.8
P37 唐古拉山口 91°39.796' 33°00.644' 5 080 15 B,F -1.80 2.4
P41 日阿纳藏布 91°32.040' 32°30.465' 4 868 20 F,B -0.27 5.0
P42 安多谷地 91°36.849' 32°24.164' 4 897 16 F -0.22 3.4
P43 安多谷地 91°37.222' 32°23.687' 4 887 18 H,F,D -0.20 3.5
P44 安多谷地 91°34.884' 32°18.565' 4 807 15 B,F -0.12 2.4
图1 观测场地多年冻土上限深度
Fig.1 Permafrost table under monitoring sites
图2 监测场地多年冻土上限变化
Fig.2 Change of permafrost table under monitoring sites
图3 观测场地冻土上限附近地温
Fig.3 Ground temperature at permafrost table under monitoring sites
图4 观测场地冻土上限附近地温变化
Fig.4 Change of ground temperature at permafrost table under monitoring sites
图5 观测场地15 m深度地温
Fig.5 Ground temperature at 15 m depth under monitoring sites
图6 观测场地15 m深度地温变化
Fig.6 Change of ground temperature at 15 m depth under monitoring sites
图7 冻土退化严重场地地温随深度变化(2013年4月15日)
Fig.7 Change of ground temperature along depth under sites with permafrost degradation(April,15 th, 2013)
[1] Qin Dahe, Yao Tandong, Ding Yongjian, et al.Glossary of Cryosphere Science[M]. Beijing: China Meteorological Press, 2014.
[秦大河,姚檀栋,丁永建,等.冰冻圈科学辞典[M].北京: 气象出版社,2014.]
[2] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000.
[周幼吾,郭东信,邱国庆,等.中国冻土[M].北京: 科学出版社,2000.]
[3] Wu Q B, Zhang T J.Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113: D13108.
doi: 10.1029/2007JD009539     URL    
[4] Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112: F02S03.
doi: 10.1029/2006JF000631     URL    
[5] Jin Huijun, Zhao Lin,Wang Shaoling,et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China(Series D),2006,36(11):1 009-1 019.
[金会军,赵林,王绍令,等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学:D辑,2006,36(11):1 009-1 019.]
doi: 10.3321/j.issn:1006-9267.2006.11.004     URL    
[6] Wang S L, Jin H J, Li S X, et al. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J]. Permafrost Periglacial Process, 2000, 11: 43-53.
doi: 10.1002/(ISSN)1099-1530     URL    
[7] Wu Qingbai, Lu Zijian, Liu Yongzhi.Permafrost monitoring and its recent changes in Qinghai-Tibet Plateau[J]. Advances in Climate Change Research, 2005, 1(1): 26-28.
[吴青柏,陆子建,刘永智.青藏高原多年冻土监测及近期变化[J]. 气候变化研究进展, 2005, 1(1): 26-28.]
doi: 10.3969/j.issn.1673-1719.2005.01.007     URL    
[8] Wang Shaoling.Permafrost changes along the Qinghai-Xizang Highway during the last decades[J]. Arid Land Geography, 1993, 16(1): 1-7.
[王绍令. 近数十年来青藏公路沿线多年冻土变化[J]. 干旱区地理, 1993, 16(1): 1-7.]
[9] Sun Zhizhong, Wu Guilong, Yun Hanbo, et al. Permafrost degradation under an embankment of the Qinghai-Tibet Railway in the southern limit of permafrost[J]. Journal of Glaciology and Geocryology, 2014,36(4):767-771.
[孙志忠,武贵龙,贠汉伯,等. 多年冻土南界附近青藏铁路路基下的冻土退化[J]. 冰川冻土,2014,36(4):767-771.]
doi: 10.7522/j.issn.1000-0240.2014.0092     URL    
[10] Gao Baolin, Sun Zhizhong, Dong Tianchun, et al. Characteristics of thawed interlayer beneath embankment of the Qinghai-Tibet Railway in permafrost regions and its effect on embankment settlement deformation[J]. Journal of Glaciology and Geocryology, 2015,37(1):126-131.
[高宝林,孙志忠,董添春,等. 青藏铁路路基下融化夹层特征及其对路基沉降变形的影响[J]. 冰川冻土,2015,37(1):126-131.]
doi: 10.7522/j.issn.1000-0240.2015.0013     URL    
[11] Wu Qingbai,Niu Fujun.Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin,2013,58(2):115-130.
[吴青柏,牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报,2013,58(2):115-130.]
[12] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China(Series D), 2006, 49(11): 1 156-1 169.
[王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学: D辑, 2006, 36: 743-754.]
[13] Wu Q B, Zhang T J.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010, 115: D09107. DOI:10.1029/2009JD012974.
doi: 10.1029/2009JD012974     URL    
[14] Wu Q B, Liu Y Z.Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science Technology, 2004, 38(2/3): 85-92.
doi: 10.1016/S0165-232X(03)00064-8     URL    
[15] Zhao L, Wu Q B, Marchenko S S, et al. Thermal state of permafrost and active layer in central Asia during the International Polar Year[J].Permafrost Periglacial Process,2010,21(2):198-207.
doi: 10.1002/ppp.688     URL    
[16] Liu Minghao, Sun Zhizhong, Niu Fujun, et al. Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014,36(5):1 122-1 130.
[刘明浩,孙志忠,牛富俊,等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土,2014,36(5):1 122-1 130.]
doi: 10.7522/j.issn.1000-0240.2014.0134     URL    
[17] Wu Q B, Zhang T J, Liu Y Z.Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
doi: 10.5194/tc-6-607-2012     URL    
[18] Yu Qihao, Fan Kai, Qian Jin, et al. Key issues of highway construction in permafrost regions in China[J]. Science in China(Series E), 2014,44(4): 425-432.
[俞祁浩, 樊凯, 钱进, 等. 我国多年冻土区高速公路修筑关键问题研究[J]. 中国科学:E辑,2014,44(4): 425-432.]
[19] Yang Jianping,Ding Yongjian,Fang Yiping,et al.Research frame of vulnerability and adaptation for the cryosphere and its changes[J]. Advances in Earth Science,2015,30(5): 517-529.
[杨建平,丁永建,方一平,等. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展,2015,30(5):517-529.]
doi: 10.11867/j.issn.1001-8166.2015.05.0517     URL    
[20] Ma W, Mu Y H, Wu Q B, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science Technology,2011,67(3):178-186.
doi: 10.1016/j.coldregions.2011.02.010     URL    
[21] Wu Shaohong, Yin Yunhe, Zheng Du, et al. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 2005,60(1):3-11.
[吴绍洪,尹云鹤,郑度,等.青藏高原近30年气候变化趋势[J].地理学报,2005,60(1):3-11.]
doi: 10.3321/j.issn:0375-5444.2005.01.001     URL    
[22] Cai Hancheng, Li Yong, Yang Yongpeng, et al. Variation of temperature and permafrost along Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,35(7):1 434-1 444.
[蔡汉成,李勇,杨永鹏,等.青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2017,35(7):1 434-1 444.]
[23] Zhu Zhaorong, Li Yong, Xue Chunxiao, et al. Changing tendency of precipitation in permafrost regions along Qinghai-Tibet Railway during last thirty years[J]. Journal of Glaciology and Geocryology, 2011,33(4):846-850.
[朱兆荣,李勇,薛春晓,等. 1976—2010 年青藏铁路沿线多年冻土区降水变化特征[J]. 冰川冻土,2011,33(4):846-850.]
URL    
[24] Zhang Tingjun.Progress in global permafrost and climate change studies[J]. Quaternary Sciences, 2012,32(1):27-38.
[张廷军. 全球多年冻土与气候变化研究进展[J].第四纪研究,2012,32(1):27-38.]
doi: 10.3969/j.issn.1001-7410.2012.01.03     URL    
[25] Romanovsky V E,Smith S L,Christiansen H H.Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: A synthesis[J].Permafrost and Periglacial Progresses,2010,21(2):106-116.
doi: 10.1002/ppp.689     URL    
[26] Chang Xiaoli, Jin Huijun, He Ruixia, et al. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013,35(1):93-100.
[常晓丽,金会军,何瑞霞,等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土,2013,35(1):93-100.]
doi: 10.7522/j.issn.1000-0240.2013.0011     URL    
[27] Yu Qihao, Bai Yang, Jin Huijun, et al. The study of the patchy permafrost along the Heihe-Bei’an Highway in Xiao Hinggan Mountains with ground penetrating radar[J]. Journal of Glaciology and Geocryology, 2008,30(3):461-468.
[俞祁浩,白旸,金会军,等. 应用探地雷达研究中国小兴安岭地区黑河—北安公路沿线岛状多年冻土的分布及其变化[J]. 冰川冻土,2008,30(3):461-468.]
[28] Pang Qiangqiang, Zhao Lin, Li Shuxun.Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2011,33(2):349-356.
[庞强强,赵林,李述训.局地因素对青藏公路沿线多年冻土区地温影响分析[J].冰川冻土,2011,33(2):349-356.]
doi: 10.3969/j.issn.0253-4967.2015.04.020     URL    
[29] Ma Wei, Mu Yanhu, Li Guoyu, et al. Responses of embankment thermal regime to engineering activities and climate change along the Qinghai-Tibet Railway[J]. Science in China(Series D),2013,43(3):478-489.
[马巍,穆彦虎,李国玉,等. 多年冻土区铁路路基热状况对工程扰动及气候变化的响应[J]. 中国科学:D辑,2013,43(3):478-489.]
[30] Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China (Series D),2009,39(11):1 570-1 578.
[吴吉春,盛煜,吴青柏,等. 青藏高原多年冻土退化过程及方式[J]. 中国科学:D辑, 2009, 39(11): 1 570-1 578.]
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[6] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[7] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[8] 刘佳,张廷军. 利用钻孔温度梯度重建过去气候变化进展[J]. 地球科学进展, 2013, 28(4): 429-446.
[9] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[10] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[11] 王澄海,靳双龙,吴忠元,崔洋. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用[J]. 地球科学进展, 2009, 24(2): 132-140.
[12] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[13] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
[14] 陈仁升,吕世华,康尔泗,吉喜斌,阳勇,张济世. 内陆河高寒山区流域分布式水热耦合模型(Ⅰ):模型原理[J]. 地球科学进展, 2006, 21(8): 806-818.
[15] 徐学祖,程国栋,俞祁浩. 青藏高原多年冻土区天然气水合物的研究前景和建议[J]. 地球科学进展, 1999, 14(2): 201-204.
阅读次数
全文


摘要