地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 806 -818. doi: 10.11867/j.issn.1001-8166.2006.08.0806

寒区水文过程研究 上一篇    下一篇

内陆河高寒山区流域分布式水热耦合模型(Ⅰ):模型原理
陈仁升,吕世华,康尔泗,吉喜斌,阳勇,张济世   
  1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-03-18 修回日期:2006-06-29 出版日期:2006-08-15
  • 通讯作者: 陈仁升 E-mail:crs2008@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“内陆河流域高寒山区多年冻土活动层产流机制观测试验研究”(编号:40401012)和“长江源区冰雪水文过程及对气候变暖的响应研究”(编号:40301010);中国科学院寒区旱区环境与工程研究所知识创新前沿工程项目“黑河流域交叉集成研究的模型开发和模拟环境建设”(编号:2003102)和“内陆河流域高寒山区多年冻土活动层产流机制观测试验研究”(编号:2004112);中国科学院知识创新工程重要方向性项目“内陆河(黑河)水—土—气—生观测与综合研究”(编号:KZCX3-SW-329)资助.

A Distributed Water-Heat Coupled (DWHC) Model for Mountainous Watershed of An Inland River Basin (Ⅰ): Model Structure and Equations

Chen Rensheng,Lü Shihua,Kang Ersi,Ji Xibin,Yang Yong,Zhang Jishi   

  1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2006-03-18 Revised:2006-06-29 Online:2006-08-15 Published:2006-08-15

在全球变暖的背景下,我国多数大江大河源区存在冰川退缩、雪线上升以及多年冻土和季节冻土明显退化等现象,并由此造成河源区产流量减少以及生态环境恶化等诸多问题,这在内陆河山区流域体现的较为明显,但目前分布式水文模型中很少涉及冻土水热耦合问题。文章以黑河干流山区流域为例,构建了一个内陆河高寒山区流域分布式水热耦合模型(DWHC)。模型基于土壤水热连续性方程将流域产流、入渗和蒸散发过程融合起来,在植被截留、入渗、产流和蒸散发计算方面也有所改进和创新,部分模块具有多个可选择方案。模型设计了与中尺度大气模式MM5的嵌套接口,也可以用地面气象资料驱动。模型在1 km×1 km网格基础上,以日为时间步长,将流域土壤分为18类,土壤剖面分为3~5层不等,流域植被概化为9类。模型只需要土壤初始含水量、初始地温和常规气象资料,以及土壤和植被物理参数,就能够连续演算各层土壤的温度、液态含水量、固态含水量、感热传导、潜热变化、水势梯度、导水率以及水分入渗和毛细上升量等水文循环要素。主要介绍了模型的基本原理和构建思路,有关模型的地面资料驱动结果和与MM5嵌套结果部分,参见后续文章(Ⅱ)、(Ⅲ)。

In the headwater regions of most large rivers in China, the glacier, permafrost and seasonal frozen soil have degraded largely, and the snowline has also risen in the recent 50 years, under global warming, especially in an inland river basin, where the main water resources come from mountainous river basin. Thus, it is very necessary to quantify the hydrological processes in these mountainous river basins, according to the fieldwork results and using hydrological modeling. However, the distributed hydrological model that describes the water-heat coupled processes is very rare, at the present time. Took the mountainous watershed of Heihe river basin, with an area of 10009km2, as an example, the authors designed a distributed water-heat coupled (DWHC) model. The minimal computing unit is a DEM (Digital elevation model) grid, with a spatial resolution of 1 km×1 km, and the reference frame is Alberts. The time step of the model is one day. The soil and vegetation of the watershed is divided into 18 and 9 types, respectively. In each computing grid, the soil is divided into 3~5 layers, according to the landuse types. The DWHC model included 8 sub-models, which were meteorological model, vegetation interception model, snow and glacier melting model, soil water-heat coupled model evapotranspiration model, runoff production model, infiltration model and flow concentration model. The water-heat coupled processes, based on the continuous water and heat equation, runs through the runoff production processes, infiltration processes and evapotranspiration processes. The DWHC model gave a simple numerical solution to the continuous water and heat equation, according to the soil frozen states. The meteorological inputs are daily precipitation, daily averaged air temperature, and potential evapotranspiration, which come from the meteorological stations, or from the climatic models such as MM5. The soil and vegetation characters should also be described. At that time, the model could calculate the soil temperature, soil liquid water content, soil solid water content, sense heat, latent heat, soil water tension and runoff amount, etc., given the initial soil water content and soil temperature. This paper just described the model principles, and the model results using the data at the meteorological stations as inputs, or using the MM5 results as inputs, would be discussed in the following papers.

中图分类号: 

[1] Chen Rensheng, Kang Ersi, Wu Lizong, et al. Cold regions in China [J]. Journal of Glaciology and Geocryology, 2005, 27(4): 469-475. [陈仁升,康尔泗,吴立宗,. 中国寒区分布探讨 [J]. 冰川冻土,2005,27(4):469-475.]

[2] Li Zhongqin. A glacier melt water pool was discovered at summit of east branch of glacier No. 1 at ürümqi river head, Tianshan Mts., Xinjiang [J]. Journal of Glaciology and Geocryology, 2005, 27(1): 150-152. [李忠勤. 天山乌鲁木齐河源1号冰川东支顶部出现冰面湖 [J]. 冰川冻土,2005, 27(1): 150-152.]

[3] Michael B A, Refsgaard J C. Distributed Hydrological Modeling [M]. Boston: Kluwer Academic Publishers. 1996.

[4] Li Jiren. Application of remote sensing and geographic information system in research of distributed hydrological model [J]. Hydrology, 1997(3): 8-12. [李纪人. 遥感和地理信息系统在分布式水文模型研制中的应用 [J]. 水文,1997(3): 8-12.]

[5] Xiong Lihua, Guo Shenglian. Three layers coupled watershed hydrological model (I) model structure and equation [J]. Journal of Wuhan University of Hydraulic & Electric Engineering, 1998,31(1):28-31. [熊立华,郭生练. 三层耦合流域水文模型(I)模型结构和数学方程 [J]. 武汉水利电力大学学报,1998,31(1):28-31.]

[6] He Yanbo, Yang Kun. Remote sensing and geographic information system applied to hydrologic modeling [J]. Geology-Geochemistry,1999,27(2):99-103. [何延波,杨琨. 遥感和地理信息系统在水文模型中的应用 [J]. 地质地球化学,1999,27(2):99-103.]

[7] Guo Fang, Liu Xinren, Ren Liliang. A topography based hydrological model: TOPMODEL and its widened application [J]. Advance in Water Science,2000,11(3):296-301. [郭方,刘新仁,任立良. 以地形为基础的流域水文模型——Topmodel及其拓宽应用 [J]. 水科学进展,2000,11(3):296-301.]

[8] Guo Shenglian, Xiong Lihua, Yang Jing. A DEM and physically based distributed hydrological model [J]. Journal of Wuhan University of Hydraulic & Electric Engineering,2000,33(6):1-5. [郭生练,熊立华,杨井. 基于DEM的分布式流域水文物理模型 [J]. 武汉水利电力大学学报,2000,33(6):1-5.]

[9] Ren Liliang. A study on digital hydrological modeling [J]. Journal of Hehai University,2000,28(4):1-7. [任立良. 流域数字水文模型研究 [J]. 河海大学学报,2000,28(4):1-7.]

[10] Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed runoff model for inland river mountainous basin of northwest china [J]. Journal of Geographical Sciences, 2003, 13(3): 363-372.

[11] Yu Xinying, Liu Xinren. Distributed hydrological model for watersheds supplemented with melted snow and glacier water and rainfall [J]. Journal of Hehai University,2002,30(5):23-27. [俞鑫颖,刘新仁. 分布式冰雪融水雨水混合水文模型 [J]. 河海大学学报,2002,30(5):23-27.]

[12] Wang Zhonggen, Zheng Hongxing, Liu Changming, et al. A distributed hydrological model with its application to the Jinghe watershed in the Yellow River Basin [J]. Science in China(Series E), 2004, 47(suppl.):60-71.

[13] Huang Qinghua, Zhang Wanchang. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of Heihe river basin,China [J]. Journal of Nanjing Forestry University,2004,28(2):22-26. [黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用 [J]. 南京林业大学学报,2004,28(2):22-26.]

[14] Huangping, Zhao Jiguo. A study on distributed hydrological mathematical model of basin and applied prospect [J]. Hydrology,1997,(5):5-10. [黄平,赵吉国. 流域分布型水文数学模型的研究及应用前景展望[J]. 水文,1997,(5):5-10.]

[15] Ren Liliang, Liu Xinren. A review of the digital elevation model extraction and digital hydrological modeling [J]. Advance in Water Science,2000,11(4):463-469. [任立良,刘新仁. 数字高程模型信息提取与数字水文模型研究进展 [J]. 水科学进展,2000,11(4):463-469.]

[16] Chen Rensheng, Kang Ersi, Yang Jianping, et al. Research review of hydrological modeling [J]. Journal of Desert Research,2003,23(3):221-229. [陈仁升,康尔泗,杨建平,. 水文模型研究综述 [J]. 中国沙漠,2003,23(3):221-229.]

[17] Wang Zhonggen, Liu Changming, Wu Xianfeng. A review of the studies on distributed hydrological model based on DEM [J]. Journal of Natural Resources,2003,28(2):168-173. [王中根,刘昌明,吴险峰. 基于DEM的分布式水文模型研究综述 [J]. 自然资源学报,2003,28(2):168-173.]

[18] Wang Shugong, Kang Ersi, Lixin. Progress and perspective of distributed hydrological models [J]. Journal of Glaciology and Geocryology,2004,26(1):61-65. [王书功,康尔泗,李新. 分布式水文模型的进展及展望 [J]. 冰川冻土,2004,26(1):61-65.]

[19] Rui Xiaofang, Huang Guoru. Actuality and future of the distributed hydrological models [J]. Advances in Science and Technology of Water Resources,2004,24(2):55-58. [芮孝芳,黄国如. 分布式水文模型的现状与未来 [J]. 水利水电科技进展,2004,24(2):55-58.]

[20] Campbell G S. An Introduction to Environmental Biophysics [M]. New York:Springer-Verlag. 1977.

[21] Allen R G, Smith M, Perrier A. An update for the definition of reference evaporation [J]. ICID Bulletin,1994, 43(2): 1-34.

[22] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using larger-scale parameters [J]. Monthly Weather Review, 1972(100):81-92.

[23] Hou Xueyu. Vegetation Atlas in China (11000000) [M]. Beijing: Science Press. 2001. [侯学煜. 中国植被图集(11000000)[M]. 北京:科学出版社. 2001.]

[24] Kang Ersi, Cheng Guodong, Song Kechao, et al. Simulation of energy and water balance in Soil-Vegetation- Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest Chin[J]. Science in China(Series D), 2005, 48(4): 538-548.

[25] Wang Xinping, Kang Ersi, Zhang Jingguang, et al. Comparison of interception loss in shrubby and sub.2.shrubby communities in the Tengger desert of northwest China [J]. Journal of Glaciology and Geocryology,2004,26(1):89-94. [王新平,康尔泗,张景光,. 荒漠地区主要固沙灌木的降水截留特征 [J]. 冰川冻土,2004,26(1):89-94.]

[26] Du Zhanchi, Yang Zonggui, Cui Xiaoyong. A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia [J]. Grassland of China,2001,23(5):13-18. [杜占池,杨宗贵,崔骁勇. 内蒙古典型草原地区5类植物群落叶面积指数的比较研究 [J]. 中国草地,2001,23(5):13-18.]

[27] Chen Longheng, Qu Yaoguang. Water and Land Resources and Their Rational Development and Utilization in the Hexi Region [M]. Beijing: Science Press,1992.[陈隆亨,曲耀光. 河西地区水土资源及其合理开发利用 [M]. 北京:科学出版社,1992.]

[28] Chen Longheng, Xiao Honglang. Mountainous Soil and Its Utilization in Hexi Region [M]. Beijing: Ocean Press,2003.[陈隆亨,肖洪浪. 河西土地土壤及其利用 [M]. 北京:海洋出版社,2003.]

[29] Soil Reconnaissance Office of Gansu Province. Gansu Soil [M]. Beijing: Chinese Agriculture Press,1993. [甘肃省土壤普查办公室. 甘肃土壤 [M]. 北京:农业出版社,1993.]

[30] Soil Reconnaissance Office of Gansu Province. Gansu Soil Type [M]. Lanzhou: Gansu Science and Technology Press,1993.[甘肃省土壤普查办公室. 甘肃土种志 [M]. 兰州:甘肃科学技术出版社,1993.]

[31] Zhu Zuxiang. Soil Sciences [M]. Beijing: Chinese Agriculture Press,1983.[朱祖祥. 土壤学 [M]. 北京:农业出版社,1983.]

[32] Zhu Anning, Zhang Jiabao, Cheng Zhuhua. A simple method to estimate water retention curves of light-textured soil [J]. Chinese Journal of Soil Science,2003,34(4):253-258. [朱安宁,张佳宝,程竹华. 轻质土壤水分特征曲线估计的简便方法 [J]. 土壤通报,2003,34(4):253-258.]

[33] Zhang Xiying, Zhang Lu, Liu Changming. On describing the hydraulic properties of unsaturated soil in piedmont of Mt. Taihang [J]. Acta Agriculturae Boreali-Sinica,2001,16(2):75-82. [张喜英,张橹,刘昌明. 太行山前平原土壤水分特征曲线拟合参数的确定 [J]. 华北农业学报,2001,16(2):75-82.]

[34] Xu Shaohui, Liu Jianli. Fractal approach for estimating soil water retention curves of various textures [J]. Journal of Hydraulic Engineering,2003,(1):78-82. [徐绍辉,刘建立. 估计不同质地土壤水分特征曲线的分形方法 [J]. 水利学报,2003,(1):78-82.]

[35] Liu Jianli, Xu Shaohui. Figuring soil water characteristic curve based on particle size distribution data: Application of fractal models [J]. Acta Pedologica Sinica,2003,40(1):46-52. [刘建立,徐绍辉. 根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用 [J]. 土壤学报,2003,40(1):46-52.]

[36] Liu Jianli, Xu Shaohui. Estimation of soil water retention characteristics with a non-similar-media method [J]. Journal of Hydraulic Engineering,2003, (4):80-84. [刘建立,徐绍辉. 非相似介质方法在估计土壤水分特征曲线中的应用 [J]. 水利学报,2003,(4):80-84.]

[37] Kang Eris, Ohmura. Energy, water amount and runoff balance model in a glacier watershed, Tian Shan[J]. Science in China(Series B),1994,24(9),983-991. [康尔泗,A.Ohmura. 天山冰川作用流域能量、水量和物质平衡及径流模型 [J]. 中国科学:B,1994,24(9),983-991.]

[38] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watershed of inland river basins in the arid area of northwest China to climatic changes [J]. Science in China(Series D),1999, 42(suppl.): 52-63.

[39] Jansson P E,Karlberg L. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere systems [M]. Stockholm: Royal Institute of Technology, Dept of Civil and Environmental Engineering,2001.

[40] Yang Daqing, Barry E G, John R M, et al. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges [J]. Water Resources Reaserach,1999, 35(2):491-508.

[41] Neilsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation, version 2002. http://www.brc.larrus.edu/swat/.

[42] Xiong Lihua, Guo Shengliang. Distributed Hydrological Model [M]. Beijing: China WaterPower Press,2004.[熊立华,郭生练. 分布式流域水文模型 [M]. 北京:中国水利水电出版社,2004.]

[43] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J]. Water Resource Research,1976(12): 513-522.

[44] Wang Chunhe. Relationship between groundwater and upper limit of permafrost in north Daxing'anling[C]Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, eds. Proceeding of Glaciology and Geocryology, the Geographical Society of China. Beijing: Science Press,1982:31-37.[王春鹤. 大兴安岭北部多年冻土上限和地下水[C]中国科学院兰州冰川冻土研究所编辑. 中国地理学会冰川冻土学术会议论文选集. 北京:科学出版社,1982:31-37.]

[45] http://www.pep.com.cn/200307/ca253531.htm

[46] de Vries D A. Heat transfer in soils[C]de Vries D A, Afgan N H, eds. Heat and Mass Transfer in the Biophere. I. Transfer Processes in Plant Environment. Washington DC: Scripta Book Co. 1975:5-28.

[47] Kersten M S. Thermal properties of soils [M]. Institute of Technology, Engineering Exp Station, Bulletin No. 28, Minneapolis: University of Minnesota,1949.

[48] Zhang Guanghui, Shao Mingan. Using soil physical properties to determine the absorptive parameter Sf in Green-Ampt infiltration model [J]. Acta Pedologica Sinica,2000,37(4):553-557. [张光辉,邵明安. 用土壤物理特性推求GreenAmpt入渗模型中吸力参数Sf [J]. 土壤学报,2000,37(4):553-557.]

[49] Zhou Zefu, Hong Lingxia. Studies on infiltration and infiltration simulation of soil water in different woodlands [J]. Scientia Silvae Sinicae,1997,33(1):9-17. [周择福,洪玲霞. 不同林地土壤水分入渗和入渗模拟的研究 [J]. 林业科学,1997,33(1):9-17.]

[50] Yang Dawen, Lichong, Ni Guanghen, et al. Application of a distributed hydrological model to the Yellow river basin [J]. Acta Geographica Sinica,2004,59(1):143-154. [杨大文, 羽中,倪广恒,. 分布式水文模型在黄河流域的应用 [J]. 地理学报,2004,59(1):143-154.]

[51] Zhao Renjun. Watershed Hydrological Simulation-Xin’anjiang Model and Shanbei Model [M]. Beijing: Water and Electric Power Press,1984. [赵人俊. 流域水文模拟——新安江模型和陕北模型 [M]. 北京:水利电力出版社,1984.]

[52] Rui Xiaofeng. Hydrological Principles [M]. Beijing: China WaterPower Press,2004.[芮孝芳. 水文学原理 [M]. 北京:中国水利水电出版社,2004.]

[53] Fairfield J, Leymarie P. Drainage network from grid digital elevation models[J]. Water Resources Research,1991, 27(4): 29-61.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[3] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[4] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[5] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[6] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[7] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[8] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[9] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[12] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[13] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[14] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[15] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
阅读次数
全文


摘要