地球科学进展 ›› 2008, Vol. 23 ›› Issue (2): 111 -119. doi: 10.11867/j.issn.1001-8166.2008.02.0111

综述与评述    下一篇

多年冻土区天然气水合物研究综述
吴青柏,程国栋   
  1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2007-09-30 修回日期:2007-12-20 出版日期:2008-02-10
  • 通讯作者: 吴青柏 E-mail:qbwu@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“青藏高原多年冻土区天然气水合物的形成条件探讨”(编号:40471024);中国科学院寒区旱区环境与工程研究所创新项目“多年冻土区天然气水合物形成条件研究”资助.

Understanding of Research Fundamental on Natural Gas Hydrate in Permafrost Regions

Wu Qingbai, Cheng Guodong   

  1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000,China
  • Received:2007-09-30 Revised:2007-12-20 Online:2008-02-10 Published:2008-02-10

由于多年冻土区天然气水合物的潜在资源价值和对气候、环境的影响,各国纷纷开展了大量的研究,取得了很好的研究进展。本文主要分析了天然气水合物与多年冻土间的关系、多年冻土区天然气水合物的蕴藏情况以及典型多年冻土区天然气水合物研究现状。其结果表明多年冻土控制了天然气水合物形成的温压条件,且在多年冻土层间发现具自保护效应的天然气水合物。同时多年冻土可影响分散性土体中游离气体的聚集和迁移,多年冻土融化可提高孔隙水压力。目前多年冻土区天然气水合物的蕴藏情况的估算并不完整,各国仅对典型多年冻土区天然气水合物储量进行了初步的估算。天然气水合物储量估算结果表明,在美国阿拉斯加地区大约为1.0×1012~1.2×1012 m3,加拿大马更些三角洲Beaufort海地区大约为1.6×1013 m3,俄罗斯西西伯利亚盆地250 m深度范围内可达1.7×1013 m3。我国青藏高原多年冻土区亟待搞清天然气水合物存在与否的直接证据和储量估算等关键问题。

Because of the latent energy prospect and its impacts to the climate and the environment, many countries began the studies on natural gas hydrate in permafrost regions and achieved great research progresses subsequently. The relations between natural gas hydrate and permafrost are explained in this paper, as well as the reserves of natural gas hydrate in permafrost regions and the present research situations of natrual gas hydrate in representative permafrost regions. The results indicated that the formation conditions of natural gas hydrate such as temperature and pressure were restricted by permafrost; and the natrual gas hydrate with self-preservation was discovered inside the permafrost layer. The accumulation and transfer of free gas in sediment were influenced by permafrost;and besides, the thawing of permafrost can raise the pore pressure. The present estimations of the natural gas hydrate reserves in permafrost regions were not integral or all-around which were only made in some representative permafrost regions. The estimation showed that the natural gas hydrate reserves in Northslope in Alaska, US were about 1.0×1012~1.2×1012 m3, about 1.6×1013 m3 in Beaufort, Makenzie Delta, and about 1.7×1013 m3 above 250 m depth in west Siberia. The existence of natural gas hydrate in Qinghai-Tibetan Plateau is an important issue which demands prompt understanding.

中图分类号: 

[1] Sloan E Dendy. Clathrate Hydrates of Natural Gases[M].New York:Marcel DekkerInc.1990.

[2] Sloan E Dendy. Fundamental principles and applications of natural gas hydrates [J]. Nature200342620: 353-359. 

[3] Carolyn A Koh. Towards a fundamental understanding of natural gas hydrates [J]. Chemical Society Review200231: 157-167.

[4] Shi DouSun ChengquanZhu Yuenian. Development and Research of Natural Gas Hydrate in Abroad [M]. Lanzhou: Lanzhou University Press1992.[史斗,孙成权,朱岳年. 国外天然气水合物研究进展[M]. 兰州:兰州大学出版社1992.] 

[5] Kvenvolden K A. Potential effects of gas hydrate on human welfare [C]Proceeding of National Academy of Science Colloquium.USA199996:3 420-3 426.

[6] Kvenvolden K A. Gas Hydrate-geologic perspective and global change [J]. Reviews of Geophysics199331:173.

[7] Kvenvolden K A. Methane hydrate—A major reservoir of carbon in the shallow geosphere? [J]. Chemical Geology198871: 41-51.

[8] Dickens G R. A methane trigger for global warming? [J]. Science2003299:1 017.

[9] Judes A SMajorowicz J A. Geothermal conditions for gas hydrate stability in the Beaufort-Mackenzie area: The global change aspect [J]. Global and Planetary Change199262/4:251-263.

[10] Wang ShuhongSong HaibinYan Wen. Environmental effects of natural gas hydrate [J].Bulletin of MineralogyPetrology and Geochemistry2004232:160-165.[王淑红,宋海斌,颜文.天然气水合物的环境效应[J]. 矿物岩石地球化学通报2004232: 160-165.]

[11] Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines [J].Industrial and Engineering Chemistry193426: 851.

[12] Lingelem M NMajeed A IStrange E. Industrial experience in evaluation of hydrate formationinhibitionand dissociation in pipeline design and operation [C]1st International Conference on Natural Gas Hydrates. New York: Academy of Sciences1994715:75.

[13] Collett T SBird K JKvenvolden K Aet al. Geological interrelations relative to gas hydrates within the North Slop of Alaska [C]US Geological Survey. Open File Report1988150: 88-389.

[14] Collett T S. Energy resource potential of natural gas hydrates [J].AAPG20028611:1 971-1 992.

[15] Yin HaishengShi ZhiqiangLiu Wenjunet al. Potentiality and perspective of natural gas hydrate in ever-frozen ground region of the Qinghai-Tibet Plateau [J]. Tibet Geology2002201):45-52.[伊海生,时志强,刘文均,等.青藏高原多年冻土区天然气水合物形成潜力及远景[J]. 西藏地质,2002201):45-52.]

[16] Collett T SBird K JKvenvolden K Aet al. Geological interrelations relative to gas hydrate within the north slope of Alaska [C]Final Report DE-AI21-83MC20422US Department of Energy1988.

[17] Collett T SDallimore S R. Hydrocarbon gases associated with permafrost in the Mackenzie DeltaNorthwest TerritoriesCanada [J]. Applied Geochemistry199914: 607-620.

[18] Serebryakov V AChilingar G VKatz S A. Methods of estimating and predicting abnormal formation pressures [J]. Journal of Petroleum Science and Engineering199513:113-123.

[19] Catthro D S. Specialized deep core testing of samples from the cross-delta transect [C]Dallimore S RMatthews J V. The Mackenzie Delta Borehole Project. Environmental Studies Research Funds Report 1351977.

[20] Dallimore S RMatthews J Veds. The mackenzie delta borehole project [C]Environmental Studies Research Funds Report 1351997.

[21] Weaver J SStewart J M. In situ hydrates under the Beaufort shelf [C]French M Hed. Proceedings of the Fourth Canadian PermafrostConference1981.National Research Council of Canada. The Roger J.E. Brown Memorial Volume1982:312-319.

[22] Hitchon BUnderschultz J RBachu Set al. Hydrogeologygeopressures and hydrocarbon occurrencesBeaufort-Mackenzie basin [J]. Bulletin of Canadian Petroleum Geology199038: 215-235.

[23] Dallimore S RCollett T S. Intrapermafrost gas hydrate from a deep corehole in the Mackenzie deltaNorthwest TerritoriesCanada [J].Geology199523:527-530.

[24] Yakushev V SCollett T S. Gas hydrates in Arctic regions: Risk to drilling and production [C]Proceedings of 2nd International Offshore and Polar Engineering Conference San FranciscoCalifornia1992:669-673.

[25] Yakushev V SChuvilin E M. Natural gas and gas hydrate accumulations within permafrost in Russia [J]. Cold Regions Science and Technology200031:189-197.

[26] Collett T S. Detection and evaluation of natural gas hydrates from well logsPrudhoe Bay Alaska [C]Proceedings of the Fourth International Conference on PermafrostFairbanks Alaska. Washington DC: National Academy of Sciences1983:169-174.

[27] Yakushev V SPerlova E VMakhonina N A. Metastablerelicgas hydrates: Spreadingresourcesprospects of development [J]. Earth's Cryosphere200591:68-72.

[28] Chen ZuoyiYang XiaoxiYe Guoxinget al. Current progress in the research on natural gas hydrate [J]. Marine Sciences Bulletin2002212:78-85.[陈作义,杨晓西,叶国兴,等.天然气水合物概况及最新研究进展[J].海洋通报,2002212:78-85.]

[29] MacDonald G T. The future of methane as an energy resource [J]. Annual Review of Energy199015:53-83.

[30] Collett T S. Energy resource potential of natural gas hydrates [J]. AAPG Bulletin20028611: 1 971-1 992.

[31] Smith S LJudge A S. Estimates of methane hydrate volumes in the Beaufort-Mackenzie regionNorthwest Territories [C]Current Research.1995-BGeological Survey of Canada1995:81-88. 

[32] Cherskiy N VTsarev V PNikitin S P. Investigation and prediction of conditions of accumulation of gas resources in gas-hydrate pools [J]. Petroleum Geology198521:65-89.

[33] Xu XuezuCheng GuodongYu Qihao. Gas hydrates in permafrost regions on the Qinghai-Xizang Plateau [J]. Advances in Earth Science1999142:201-204.[徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的研究前景和建议[J].地球科学进展,1999142:201-204.]

[34] Zhang LixinXu XuezuMa Wei. Permafrost in Qinghai-Xizang plateau and natural gas hydrate [J]. Natural Gas Geoscience2001121:22-26.[张立新,徐学祖,马巍.青藏高原多年冻土与天然气水合物[J].天然气地球科学,2001121:22-26.]

[35] Huang PengPan GuitangWang Liquanet al. Prospect evaluation of natural gas hydrate resources on the Qinghai-Tibet plateau [J]. Geological Bulletin of China20022111: 794-798.[黄朋,潘桂棠,王立全,等.青藏高原天然气水合物资源预测[J].地质通报,20022111: 794-798.]

[36] Liu HuaishanHan Xiaoli. Geophysical recognition and prediction of natural gas hydrates in Qiangtang basin of Tibet [J]. Northwestern Geology2004374:33-38.[刘怀山,韩晓丽.西藏羌塘盆地天然气水合物地球物理特征识别与预测[J].西北地质,2004374:33-38.]

[37] Chen DuofuWang MaochunXia Bin. Formation condition and distribution prediction of gas hydrate in Qinghai-Tibet Plateau permafrost [J].Chinese Journal of Geophysics2005481: 165-172. [陈多福,王茂春,夏斌.青藏高原冻土带天然气水合物的形成条件与分布预测[J].地球物理学报,2005481: 165-172.]

[38] Wu QingbaiJiang GuanliPu Yibinget al. Analysis of relationships between permafrost and natural gas hydrate in Qinghai-Xizang Plateau [J]. Geological Bulletin of China2006251:29-33.[吴青柏,蒋观利,蒲毅彬,等.青藏高原天然气水合物形成与多年冻土关系分析[J].地质通报,2006251:29-33.]

[39] Bily CDick J W L.Natural occurring gas hydrates in the Mackenzie DeltaNorthwest Territories [J]. Bulletin of Canadian Petroleum Geology1974223: 340-352.

[40] Hawkings T JHatelid W G. The regional setting of the Taglu Field [C]Canada's Continental Margins and Offshore Petroleum Exploration.Canadian Society of Petroleum Geologist Press1975: 633-647.

[41] Collett T SDallimore S R. Hydrocarbon gases associated with permafrost in the Mackenzie DeltaNorthwest TerritoriesCanada [J]. Applied Geochemistry199914:607-620.

[42] Dallimore S RCollett T S. Summary and implications of the Mallik 2002 Gas Hydrate Production Research Well Program [C]Dallimore S RCollet T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well ProgramMackenzie DeltaNorthwest TerritoriesCanada. Geological Survey of CanadaBulletin2005585:1-36.

[43] Satoh TDallimore S RCollett T Set al. Production-test planning for the JAPEX/JNOC/GSC. Mallik 5L-38 gas hydrate production research well [C] Dallimore S RCollet T S.Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program. Mackenzie Delta Northwest TerritoriesCanada. Geological Survey of CanadaBulletin2005: 585.

[44] Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River areaNorth Slope Alaska [J]. American Association of Petroleum Geologists Bulletin1993775: 793-812.

[45] Timothy S Collett. North Slope of Alaska Gas Hydrate Test Well Program [EB/OL]. http:www.netl.doe.gov/publications/proceedings/97/97ng/ng97pdf/NGP13.PDF1997.

[46] Collett T S. Gas Hydrates in American. House Committee on Resourcessubcommittee on Energy and Mineral Resources on Energy Technology [EB/OL]. http:resourcescommittee.house.gov/archives/108/ testimony/2004/timothycollett.htm2004.

[47] Yakushev V. Intrapermafrost gas hydrates at the north of west Siberia [C]AAPG Hedberg ConferenceGas Hydrates: Energy Resource Potential and Associated Geologic Hazard. VancouverBCCanada2004. 

[48] Makogon Y F. Natural gas hydrates [C]The State of Study in the USSR and Perspectives for Its UsePaper Presented at the Third Chemical Congress of North AmericaTorontoCanada1988.

[49] Collett T SGinsburg G D. Gas hydrates in the Messoyakha gas field of the West Siberian Basin-a re-examination of the geologic evidence [J]. International Journal of Offshore and Polar Engineering199881: 22-29.

[50] Shine K PDerwent R GWuebbles D Jet al. Climate change [C]Houghton J TJenkins G JEphraums J J. The IPCC Scientific Assessment.New York:Cambridge University Press1990:41-68.

[51] Lachenbruch A HMarshall B V. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic [J]. Science1986234:689-696.

[52] Zhang TOsterkamp T EStamnes K. Effects of climate on the active layer and permafrost on the north slope of AlaskaUSA. [J]. Permafrost Periglacial Process19978:45-67.

[53] Smith S LBurgess M MRiseborough Det al. Recent trends from Canadian permafrost thermal monitoring network sites [J]. Permafrost and Periglacial Processes200516:19-30. 

[54] Pavlov A V. Permafrost-climate monitoring of Russia:Analysis of field data and forecast [J]. Polar Geogrophy1996201:44-64.

[55] Cheng GuodongWu Tonghua. Responses of permafrost to climate change and their environmental significantQinghai-Tibet Plateau [J]. Journal of Geophysical Research2007:112F02S03doi:1029/20065 F000631.

[56] Wu QingbaiLiu Yongzhi. Ground temperature monitoring and its recent change in Qinghai Tibet Plateau [J]. Cold Regions Science and Technology200438:85-92.

[57] Kats M EPak D KDickens G R. The source and fate of massive carbon input during the latest Paleocene thermal maximum [J]. Science19992865 444:1 531-1 533.

[58] Jahren A HArens N CSarmiento G. Terrestial record of methane hydrate dissociation in the early Cretaceous [J]. Geology2001292:159-162.[59] Padden MWeissert Hde Rafelis M. Evidence for Late Jurassic release of methane from gas hydrate [J]. Geology2000293:223-226.

[60] Hesselbo S PGroecke D RJenkyns H Cet al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event [J]. Nature2000406: 392-395.

[61] MacDonald G J. Role of methane clathrates in past and future climates [J]. Climatic Change1990162:247-281.

[62] Nisbet E G. The end of the ice-age [J]. Canadian Journal of Earth Sciences1990271:148-157.

[63] Paull C KUssler III WDillon W P. Is the extent of glaciation limited by marine gas hydrates? [J]. Geophysics Research Letter1991184:432-434.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[7] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[8] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[11] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要