地球科学进展 ›› 2020, Vol. 35 ›› Issue (8): 863 -877. doi: 10.11867/j.issn.1001-8166.2020.066

青藏高原综合科学考察研究 上一篇    

雅鲁藏布江流域风成沉积研究进展
杨军怀 1( ),夏敦胜 1( ),高福元 2,王树源 1,陈梓炫 1,贾佳 3,杨胜利 1,凌智永 1, 4   
  1. 1.兰州大学 资源环境学院 西部环境教育部重点实验室, 甘肃 兰州 730000
    2.兰州城市学院 地理与环境工程学院, 甘肃 兰州 730070
    3.浙江师范大学 地理与环境科学学院, 浙江 金华 321004
    4.中国科学院青海盐湖研究所, 青海 西宁 810008
  • 收稿日期:2020-04-28 修回日期:2020-07-07 出版日期:2020-08-10
  • 通讯作者: 夏敦胜 E-mail:yangjh19@lzu.edu.cn;dsxia@lzu.edu.cn
  • 基金资助:
    第二次青藏高原综合考察研究项目“粉尘气溶胶及其气候环境效应”(2019QZKK0602);兰州大学西部环境教育部重点实验室开放基金及兰州大学中央高校基本科研业务费专项资金“雅鲁藏布江中上游地区全新世以来风沙活动演变”(lzujbky-2020-kb01)

Aeolian Deposits in the Yarlung Zangbo River Basin, Southern Tibetan Plateau: A Brief Review

Junhuai Yang 1( ),Dunsheng Xia 1( ),Fuyuan Gao 2,Shuyuan Wang 1,Zixuan Chen 1,Jia Jia 3,Shengli Yang 1,Zhiyong Ling 1, 4   

  1. 1.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    2.College of Geography and Environmental Engineering, Lanzhou City University, Lanzhou 730070, China
    3.College of;Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
    4.Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
  • Received:2020-04-28 Revised:2020-07-07 Online:2020-08-10 Published:2020-09-15
  • Contact: Dunsheng Xia E-mail:yangjh19@lzu.edu.cn;dsxia@lzu.edu.cn
  • About author:Yang Junhuai (1994-), male, Qin’an County, Gansu Province, Ph.D student. Research areas include environment and climate change in arid areas. E-mail: yangjh19@lzu.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) “Climatic and environmental effects of the dust and aerosol”(2019QZKK0602);The Open Foundation of MOE Key Laboratory of Western China's Environmental System, Lanzhou University and the Fundamental Research Funds for the Central Universities “Evolution of aeolian activities in the middle and upper reaches of Yarlung Zangbo River since the Holocene”(lzujbky-2020-kb01)

雅鲁藏布江位于青藏高原南部,流域内广泛发育着地质历史时期以来的黄土沉积和现代风沙沉积,蕴含着风成过程和环境演化的丰富信息。从风成沉积分布特征、堆积年代、沉积物特征、物源及其可能的形成机制以及风沙活动历史等方面综述了近些年雅鲁藏布江流域风成沉积的主要研究进展。结果表明:黄土主要发育于河流阶地及部分山体顶部,多形成于末次冰盛期以后且主要发育于深海氧同位素1阶段(约14 ka BP)以来,而风沙沉积集中发育于河流宽谷段,堆积时间相对较短。沉积物颗粒以机械搬运和物理风化为主,化学风化微弱。尽管沉积物理化性质呈现出一定的空间变化,但仍存在明显的局地特征,与附近地表堆积物联系密切。在风成背景下,黄土的近源成因得到了普遍认可,河谷底部地表松散物质是风成沉积发育的主要物源。风沙活动演变较为复杂,除大区域气候变化外,局地环境也是影响风沙活动及其区域差异的重要因素。未来应加强研究区风成沉积物理化性质、全新世以来的气候变化以及粉尘释放对人类生存环境影响等方面的系统研究。

The Yarlung Zangbo River is located in the southern Tibetan Plateau. Loess since the geological history and modern aeolian sand dunes are widely developed in the basin, bearing rich information on the aeolian processes and environmental evolution. In this work, we reviewed the main research progress of aeolian deposits in the Yarlung Zangbo River basin in recent years, and discussed the distribution characteristics, accumulation age, sediment characteristics and provenance and the possible formation mechanism of aeolian deposits and the history of aeolian activity. The results show that loess is mainly developed on the river’s terraces and some of the hilltops, and mostly formed since the last glacial maximum and mainly developed since Marine Isotope Stage 1 (about 14 ka BP), while aeolian sand deposit is mainly developed in the river’s wide valley, with relatively short accumulation time. The sediment particles mainly underwent mechanical transport and physical weathering, but chemical weathering was weak. Although the physical and chemical properties of sediments show some spatial changes, there still exist obvious local characteristics, which are closely related to the nearby surface sediments. Under the background of aeolian source, the local-source genesis of loess is generally recognized. The surface loose material at the bottom of valley is main material source of aeolian deposits. The evolution of aeolian activity is relatively complex. In addition to the regional climate change, the local environment is also an important factor affecting the aeolian activity and its regional difference. Based on the previous studies, we suggest that the systematic study on the physical and chemical properties of aeolian sediments, climate change since the Holocene and the impact of dust emission on human living environment should be strengthened in the future research.

中图分类号: 

图1 雅鲁藏布江流域地理位置
Fig.1 Geographical location of the Yarlung Zangbo River Basin
图2 雅鲁藏布江流域黄土沉积与风沙沉积
(a)为披覆在山体基岩上的原生黄土及河谷风沙沉积;(b)和(c)分别为支流阶地附近的原生和次生黄土;(d)~(f)为典型沙丘地貌
Fig.2 Loess and aeolian sand deposits in the Yarlung Zangbo River Basin
(a) Primary loess at the tops of mountains and aeolian sand in the valley; (b) and (c) Primary and secondary loess near the river’s terrace, respectively; (d)~(f) Typical landforms of sand dunes
图3 雅鲁藏布江流域典型黄土沉积分布特征
总样本数51个,其中前人工作典型剖面29个,野外考察典型剖面22个
Fig.3 Distribution characteristics of typical loess deposits in the Yarlung Zangbo River Basin
The total number of sections is 51, which includes 29 published typical sections and 22 investigated typical sections
图4 雅鲁藏布江流域典型风成沉积剖面及其年代
MOG1、MOG4、GRE18 和GYA3 位于拉萨河河谷内,RWS2~ZZ剖面自东向西排列,分布位置见图1。MOG1、MOG4、GRE18和GYA3数据引自参考文献[ 22 25 ];RWS2数据引自参考文献[ 48 ];Zeyi数据引自参考文献[ 49 ];YJP1、YJP2、MLP、LXP、SNP、SRP 和LCP数据引自参考文献[ 24 ];LS 和RKZ数据引自参考文献[ 50 ];STA1 和QUX1数据引自参考文献[ 22 25 ];Section 49数据引自参考文献[ 51 ];Cha’er数据引自参考文献[ 52 ];TB-7 和TB-8数据引自参考文献[ 18 ];XL和JJ数据引自参考文献[ 28 ];ZZ数据引自参考文献[ 27
Fig.4 Typical aeolian deposits profiles and its chronology in the Yarlung Zangbo River Basin
MOG1, MOG4, GRE18 and GYA3 are located in the Lhasa River valley. All of profiles (from RWS2 to ZZ) are arranged from east to west, and are shown in Figure 1. The data of MOG1,MOG4,GRE18 and GYA3 from references[22,25];The data of RWS2 from reference[ 48 ];The data of Zeyi from reference[ 49 ];The data of YJP1,YJP2,MLP,LXP,SNP,SRP and LCP from reference[ 24 ];The data of LS and RKZ from reference[ 50 ];The data of STA1 and QUX1 from references[22,25];The data of section 49 from reference[ 51 ];The data of Cha’er from reference[ 52 ];The data of TB-7 and TB-8 from reference[ 18 ];The data of XL and JJ from reference[ 28 ];The data of ZZ from reference[ 27
图5 雅鲁藏布江流域风成沉积年代概率密度曲线(据参考文献[ 24 ]修改)
Fig.5 Probability density curves of chronology of aeolian deposits in the Yarlung Zangbo River Basin (modified after reference [ 24 ])
图6 雅鲁藏布江河谷风沙沉积年代(据参考文献[ 32 ]修改)
Fig.6 Chronology of aeolian sand dunes in the Yarlung Zangbo River valley (modified after reference [ 32 ])
图7 雅鲁藏布江流域黄土与黄土高原黄土的微量元素(ab)和稀土元素(cd)分布对比(据参考文献[ 18 ]修改)
Fig.7 Trace elements (a, b) and rare earth elements (c, d) of loess in the Yarlung Zangbo River Basin and Loess Plateau (modified after reference [ 18 ])
图8 不同地区石英砂颗粒的扫描电镜影像
(a)青藏高原 [ 17 ];(b)巴丹吉林沙漠 [ 17 ];(c)腾格里沙漠 [ 17 ];(d)古尔班通古特沙漠;(e)毛乌素沙地
Fig.8 Scanning electron microscope images of quartz sands in different regions
(a) Tibetan Plateau [ 17 ]; (b) Badain Jaran Desert [ 17 ]; (c) Tengger Desert [ 17 ]; (d) Gurbantunggut Desert; (e) Mu Us Sandy Land
表1 雅鲁藏布江流域流动沙丘沉积物粒度特征
Table 1 Grain size characteristics of mobile dune sediments in the Yarlung Zangbo River Basin
图9 雅鲁藏布江宽谷段风沙沉积物常量元素(a)和微量元素(b)特征[ 60 ]
Fig.9 Major elements (a) and trace elements (b) of aeolian sands in the wide valleys of Yarlung Zangbo River[ 60 ]
图10 雅鲁藏布江流域黄土冰川成因的概念模型(据参考文献[ 18 ]修改)
Fig.10 A conceptual model of glacial genesis of loess in the Yarlung Zangbo River Basin (modified after reference [ 18 ])
1 Sun Jimin. Loess deposits and its relationship with earth sphere interactions[J]. Quaternary Sciences, 2020,40(1):1-7.
孙继敏. 黄土沉积与地球圈层相互作用[J]. 第四纪研究, 2020,40(1):1-7.
2 Liu Tungsheng. Loess and Environment[M]. Beijing: Science Press, 1985.
刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
3 Guo Zhengtang. Loess Plateau attests to the onsets of monsoon and deserts[J]. Scientia Sinica Terrae, 2017,47(4):421-437.
郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学:地球科学, 2017,47(4):421-437.
4 Wang Xin, Zhang Jinhui, Jia Jia, et al. Pleistocene loess-paleosol sequences in arid Central Asia: State of art[J]. Advances in Earth Science, 2019,34(1):34-47.
王鑫, 张金辉, 贾佳, 等. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019,34(1):34-47.
5 Yang X P. Desert research in northwestern China: A brief review[J]. Géomorphologie: Relief, Processus, Environnement, 2006,12(4):275-284.
6 Yang X P, Scuderi L A. Hydrological and climatic changes in deserts of China since the late Pleistocene[J]. Quaternary Research, 2010,73(1):1-9.
7 Li X Z, Yi C L, Chen F H, et al. Formation of proglacial dunes in front of the Puruogangri Icefield in the central Qinghai-Tibet Plateau: Implications for reconstructing paleoenvironmental changes since the Lateglacial[J]. Quaternary International, 2006,154/155:122-127.
8 Lu Huayu, Zhou Yali, Mason J, et al. Late Quaternary climatic changes in northern China—New evidences from sand dune and loess records based on optically stimulation luminescence dating[J]. Quaternary Sciences, 2006,26(6):888-894.
鹿化煜, 周亚利, Mason J, 等. 中国北方晚第四纪气候变化的沙漠与黄土记录——以光释光年代为基础的直接对比[J]. 第四纪研究, 2006,26(6):888-894.
9 Zhang Xiaoye. distributions Source, emission, transport, deposition of Asian dust and loess accumulation[J]. Quaternary Sciences, 2001,21(1):29-40.
张小曳. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积 [J]. 第四纪研究, 2001,21(1):29-40.
10 Liu Tungsheng, An Zhisheng, Yuan Baoyin. Eolian process and dust mantle (loess) in China[J]. Quaternary Sciences, 1985,6(1):113-125.
刘东生, 安芷生, 袁宝印. 中国的黄土与风尘堆积[J]. 中国第四纪研究, 1985,6(1):113-125.
11 Dong Zhiwen, Kang Shichang, Qin Dahe. Aeolian dust transport and circulation on high-elevation regions of the troposphere: New evidences from alpine snow and ice[J]. Quaternary Sciences, 2017,37(5):1 091-1 101.
董志文, 康世昌, 秦大河. 亚洲风尘高空传输和循环研究进展:雪冰粉尘证据[J]. 第四纪研究, 2017,37(5):1 091-1 101.
12 Li Jijun, Fang Xiaomin. The study of uplift of Qinghai-Xizang Plateau and environment changes[J]. Chinese Science Bulletin, 1998,43(15):1 569-1 574.
李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998,43(15):1 569-1 574.
13 Fang X M, Han Y X, Ma J H, et al. Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa[J]. Chinese Science Bulletin, 2004,49(9):953-960.
14 Han Y X, Fang X M, Kang S C, et al. Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet[J]. Atmospheric Environment, 2008,10(42):2 358-2 368.
15 Xu C, Ma Y M, Yang K, et al. Tibetan Plateau impacts on global dust transport in the upper troposphere[J]. Journal of Climate, 2018,12(31):4 745-4 756.
16 Li S, Dong G R, Shen J Y, et al. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangyo River valley[J]. Science in China (Series D), 1999,42(3):273-284.
17 Dong Z B, Hu G Y, Qian G Q, et al. High-altitude aeolian research on the Tibetan Plateau[J]. Reviews of Geophysics, 2017,55(6):864-901.
18 Sun J M, Li S H, Muhs D R, et al. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations[J]. Quaternary Science Reviews, 2007,26(17/18):2 265-2 280.
19 Péwé T L, Liu T S, Slatt R M, et al. Origin and Character of Loess Like Silt in the Southern Qinghai-Xizang (Tibet) Plateau, China[M]. Denver, CO: US Geological Survey Professional Paper, 1995.
20 Li C L, Kang S C, Zhang Q G, et al. Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau[J]. Quaternary International, 2009,208(1/2):151-157.
21 Stauch G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tietan Plateau[J]. Earth Science Reviews, 2015,150:393-408.
22 Lai Z P, Kaiser K, Bruckner H. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history[J]. Quaternary Research, 2009,72(3):421-430.
23 Ling Zhiyong, Jin Jianhui, Wu Duo, et al. Aeolian sediments and their paleoenvironmental implication in the Yarlung Zangbo catchment (southern Tibet, China) since MIS3[J]. Acta Geographica Sinica, 2019,74(11):2 385-2 400.
凌智永, 靳建辉, 吴铎, 等. MIS 3以来雅鲁藏布江流域风成沉积及环境意义[J]. 地理学报, 2019,74(11):2 385-2 400.
24 Ling Z Y, Yang S L, Wang X, et al. Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation[J]. Geomorphology, 2020,357:107 104.
25 Kaiser K, Lai Z P, Schneider B. Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene aeolian sediments in the Lhasa area, southern Tibet (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,271(3/4):329-342.
26 Jin Heling, Dong Guangrong, Liu Yuzhang, et al. The sand field evolution and climatic changes in the middle course area of Yarlung Zangbo River in Tibet, China since 0.80 Ma B.P.[J]. Journal of Desert Research, 1998,18(2):97-104.
靳鹤龄, 董光荣, 刘玉璋, 等. 0.8 Ma B.P.以来西藏雅鲁藏布江中游地区沙地演化和气候变化[J]. 中国沙漠, 1998,18(2):97-104.
27 Li T Y, Wu Y Q, Du S S, et al. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications[J]. Aeolian Research, 2016,20:169-175.
28 Pan M H, Wu Y Q, Zheng Y H, et al. Holocene aeolian activity in the Dinggye area (southern Tibet, China)[J]. Aeolian Research, 2014,12:19-27.
29 Xiao J H, Qu J J, Yao Z Y, et al. Morphology and formation mechanism of sand shadow dunes on the Qinghai-Tibet Plateau[J]. Journal of Arid Land, 2015,7(1):10-26.
30 Dong Zhibao. Tibetan Plateau Atlas of Aeolian Geomorphology[Z]. Xi'an: Xi'an Map Press, 2017.
董治宝. 青藏高原风沙地貌图集[Z]. 西安: 西安地图出版社, 2017.
31 Yang Yichou. Aeolian landform on the banks of river valley—Case study in Yalutsangpo River valley[J]. Journal of Desert Research, 1984,4(3):16-19.
杨逸畴. 雅鲁藏布江河谷风沙地貌的初步观察[J]. 中国沙漠, 1984,4(3):16-19.
32 Li Sen, Wang Yue, Ha Si, et al. Classification and development of aeolian sand landform in the Yurlung Zangbo valley[J]. Journal of Desert Research, 1997,17(4):342-350.
李森, 王跃, 哈斯, 等. 雅鲁藏布江河谷风沙地貌分类与发育问题[J]. 中国沙漠, 1997,17(4):342-350.
33 Li Q, Zhang C L, Shen Y P, et al. Developing trend of aeolian desertification in China's Tibet Autonomous region from 1977 to 2010[J]. Environmental Earth Sciences, 2016,75(10):895.
34 Shen W S, Li H D, Sun M, et al. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008[J]. Global and Planetary Change, 2012,86/87(4):37-44.
35 Dong Y X, Li S, Dong G R. Present status and cause of land desertification in the Yarlung Zangbo River Basin[J]. Chinese Geographical Science, 1999,9(3):36-43.
36 Sun Ming, Shen Weishou, Li Haidong, et al. Traits and dynamic changes of the aeolian sandy land in the source region of the Yarlung Zangbo River in Tibet[J]. Journal of Natural Resources, 2010,25(7):1 163-1 171.
孙明, 沈渭寿, 李海东, 等. 雅鲁藏布江源区风沙化土地演变趋势[J]. 自然资源学报, 2010,25(7):1 163-1 171.
37 Hou J Z, D'Andrea W J, Wang M D, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J]. Quaternary Science Reviews, 2017,163:84-94.
38 Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review[J]. Quaternary Science Reviews, 2020, 243:106 444.
39 Liu Hui, Li Xiaoying, Xiao Jianhua, et al. Variation of wind erosion climatic erosivity in the Yarlung Zangbo River basin during 1961-2015[J]. Scientia Grographica Sinica, 2019,39(4):688-695.
刘慧, 李晓英, 肖建华, 等. 1961—2015年雅鲁藏布江流域风蚀气候侵蚀力变化[J]. 地理科学, 2019,39(4):688-695.
40 Zhang Hezhen, Zhou Kanshe, Duojiesangzhu, et al. Analysis of spatiotemporal variation characteristics of wind-sand days in the Yarlung Zangbo river basin during 1981-2016[J]. Journal of Arid Land Resources and Environment, 2018,32(12):131-136.
张核真, 周刊社, 多杰桑珠, 等. 1981—2016年雅鲁藏布江流域风沙日数时空变化特征分析[J]. 干旱区资源与环境, 2018,32(12):131-136.
41 Yan P, Dong Z B, Dong G R, et al. Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau[J]. Journal of Arid Environments, 2001,47(4):443-452.
42 Zhao Jian, Li Rong. Soil erosion and subarea characteristics in Yarlung Tsangpo River basin[J]. Journal of Yangtze River Scientific Research Institute, 2008,25(3):42-45.
赵健, 李蓉. 雅鲁藏布江流域土壤侵蚀区域特征初步研究[J]. 长江科学院院报, 2008,25(3):42-45.
43 Li Haidong, Shen Weishou, Zhao Wei, et al. Wavelet analysis of precipitation in the middle reaches of the Yarlung Zangbo River from 1957 to 2007[J]. Journal of Meteorology and Environment, 2010,26(4):1-7.
李海东, 沈渭寿, 赵卫, 等. 1957—2007年雅鲁藏布江中游河谷降水变化的小波分析[J]. 气象与环境学报, 2010,26(4):1-7.
44 Zhou Na, Zhang Chunlai, Liu Yonggang. Variation of grain sizes on a mountain climbing dune in Mainling wide valley, Yarlung Zangbo River[J]. Geographical Research, 2012,31(1):82-94.
周娜, 张春来, 刘永刚. 雅鲁藏布江米林宽谷段爬升沙丘粒度分析特征研究[J]. 地理研究, 2012,31(1):82-94.
45 Jin Heling, Dong Guangrong, Zhang Chunlai. Deposition features and causes of loess in Yarlung Zangbo River valley area[J]. Journal of Desert Research, 2000,20(1):14-19.
靳鹤龄, 董光荣, 张春来. 雅鲁藏布江河谷黄土的沉积特征及成因[J]. 中国沙漠, 2000,20(1):14-19.
46 Zhou N, Zhang C L, Wu X X, et al. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau[J]. Geomorphology, 2014,224:27-38.
47 Liu Y, Wang Y S, Shen T. Spatial distribution and formation mechanism of aeolian sand in the middle reaches of the Yarlung Zangbo River[J]. Journal of Mountain Science, 2019,16(9):1 987-2 000.
48 Zhang J F, Feng J L, Hu G, et al. Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications[J]. Quaternary International, 2015,372:9-22.
49 Liu W M, Lai Z P, Hu K H, et al. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau[J]. Geomorphology, 2015,246:370-376.
50 Wu Haifeng, Lu Huayu, Zhang Hanzhi, et al. A climate event at about 12 ka BP revealed by loess deposit in middle reaches of Yarlung Zangbo River, southern Tibetan Plateau, China[J]. Journal of Desert Research, 2016,36(3):616-622.
吴海峰, 鹿化煜, 张瀚之, 等. 雅鲁藏布江中游12 ka BP前后的黄土堆积及其气候意义[J]. 中国沙漠, 2016,36(3):616-622.
51 Lehmkuhl F, Klinge M, Rees-Jones J, et al. Late Quaternary aeolian sedimentation in central and south-eastern Tibet[J]. Quaternary International, 2000,68(1):117-132.
52 Zheng Y H, Wu Y Q, Li S, et al. Grain-size characteristics of sediments formed since 8600 yr BP in middle reaches of Yarlung Zangbo River in Tibet and their paleoenvironmental significance[J]. Chinese Geographical Science, 2009,19(2):113-119.
53 Zheng Yinghua. The Response of Aeolian Activity to Climatic Change in Holocene on the Qinghai-Tibet Plateau[D]. Beijing: Beijing Normal University, 2009.
郑影华. 青藏高原典型区全新世风沙活动对气候变化的响应: 以藏南雅鲁藏布江中游宽谷区和青海共和盆地为例[D]. 北京: 北京师范大学, 2009.
54 Lu Jingfang, Xiang Shuyuan, Jiang Shangsong, et al. Analysis of soil granularity at Dazhuka Country, Rikeze[J]. Journal of Arid Land Resources and Environment, 2008,22(5):80-85.
路晶芳, 向树元, 江尚松, 等. 西藏日喀则末次冰期风成黄土粒度分析及其意义[J]. 干旱区资源与环境, 2008,22(5):80-85.
55 Bronger A, Winter R, Derevjanko O, et al. Loess-palaeosol sequences in Tadjikistan as a palaeoclimatic record of the Quaternary in central Asia[J]. Quaternary Proceedings, 1995,4:69-81.
56 Zhang J Q, Zhang C L, Li Q, et al. Grain-size distribution of surface sediments of climbing and falling dunes in the Zedang valley of the Yarlung Zangbo River, southern Tibetan Plateau[J]. Journal of Earth System Science, 2019,128(1):1-14.
57 Pan Meihui, Xue Wenxuan, Wu Yongqiu, et al. Grain size characteristics of the climbing dune in Dinggye area, Tibet[J]. Arid Land Geography, 2019,42(6):1 337-1 345.
潘美慧, 薛雯轩, 伍永秋, 等. 西藏定结地区爬坡沙丘粒度特征分析[J]. 干旱区地理, 2019,42(6):1 337-1 345.
58 Liu Lianyou, Liu Zhimin, Zhang Jiashen, et al. Sand source of sand dune and modern desertification process in Jiangdang wide valley area of Yarlung Zangbo River[J]. Journal of Desert Research, 1997,17(4):377-382.
刘连友, 刘志民, 张甲珅, 等. 雅鲁藏布江江当宽谷地区沙源物质与现代沙漠化过程[J]. 中国沙漠, 1997,17(4):377-382.
59 Zhou Na, Zhang Chunlai, Liu Yonggang. Variation of grain size of surface of barchans in Mainling great valley, Yarlung Zangbo River[J]. Scientia Geographica Sinica, 2011,31(8):958-963.
周娜, 张春来, 刘永刚. 雅鲁藏布江米林宽谷段新月形沙丘粒度分异研究[J]. 地理科学, 2011,31(8):958-963.
60 Du S S, Wu Y Q, Tan L H, et al. Geochemical characteristics of fine and coarse fractions of sediments in the Yarlung Zangbo River Basin (southern Tibet, China)[J]. Environmental Earth Sciences, 2018,77(9):336-347.
61 Chen Guoxiang, Dong Zhibao, Cui Xujia, et al. Composition and micro-morphological characteristics of aeolian sand in the middle of the Mu Us Sandy Land[J]. Journal of Desert Research, 2018,38(3):473-483.
陈国祥, 董治宝, 崔徐甲, 等. 毛乌素沙地中部风成沙的组成与微形态特征[J]. 中国沙漠, 2018,38(3):473-483.
62 Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011.
董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011.
63 Péwé T L. Report of the symposium of the Qinghai-Xizang (Tibet) Plateau[J]. Zeitschrift fur Gletscherkunde und Glazialgeologie, 1980,16(1):135-144.
64 Péwé T L. Loess in southern Tibet [abs.][J]. Geological Society of America Abstracts with Programs, 1981,13(7):528.
65 Lehmkuhl F. The spatial distribution of loess and loess-like sediments in the mountain areas of Central and High Asia[J]. Zeitschrift für Geomorphologie Supplementband Supplement, 1997,111:97-116.
66 Pye K. Eolian Dust and Dust Deposits[M]. London: Academic Press, 1987.
67 Pye K, Tsoar H. Aeolian Sand and Sand Dunes[M]. Berlin: Springer-Verlag, 2009.
68 Licht A, Dupont-Nivet G, Pullen A, et al. Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance[J]. Nature Communications, 2016,7:12 310-12 390.
69 Qiang M R, Jin Y X, Liu X X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016,132:57-73.
70 Zhang Y L, Kang S C, Zhang Q G, et al. A 500 year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau[J]. Atmospheric Research, 2015,166(1):1-9.
71 Jin Heling, Dong Guangrong, Gao Shangyu, et al. Environmental and south-western monsoonal changes in the middle Tibetan Plateau since 300 ka B.P.[J]. Journal of Desert Research, 2000,20(3):234-237.
靳鹤龄, 董光荣, 高尚玉, 等. 距今30万年来西藏中部地区环境变化与西南季风变迁[J]. 中国沙漠, 2000,20(3):234-237.
72 Kaiser K, Lai Z, Schneider B, et al. Late Pleistocene genesis of the middle Yarlung Zhangbo Valley, southern Tibet (China), as deduced by sedimentological and luminescence data[J]. Quaternary Geochronology, 2010,5:200-204.
73 Hu H P, Feng J L, Chen F. Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: Implications for terrace genesis and outburst flooding[J]. Quarternary Science Reviews, 2018,192:135-148.
74 Stauch G, Ijmker J, P?tsch S, et al. Aeolian sediments on the north-eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2012,57:71-84.
75 Lehmkuhl F, Schulte P, Zhao H, et al. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau[J]. Catena, 2014,117:23-33.
76 Yu L, Lai Z P. OSL chronology and palaeoclimatic implications of aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012,337/338:120-129.
77 Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3 600 B.P.[J]. Science, 2015,347(6 219):248-250.
78 Ling Z Y, Yang X Y, Wang Y X, et al. OSL chronology of Liena archeological site in the Yarlung Tsangpo valley throws new light on human occupation of the Tibetan Plateau[J]. The Holecene, 2020. DOI: 10.1177/0959683620908643.
doi: 10.1177/0959683620908643    
79 Hu G, Wang P, Li D H, et al. Landscape change and its influence on human activities in Lhasa basin of central Tibetan Plateau since the last deglacial[J]. Quaternary International, 2020,536:1-12.
80 Liu Xingxing, Song Lei, Jin Yanxiang, et al. History of aeolian deposits in Tibetan Plateau and climate change over Holocene[J]. Journal of Arid Land Resources and Environment, 2013,27(6):41-47.
刘星星, 宋磊, 金彦香, 等. 青藏高原全新世风沙活动历史与环境变化[J]. 干旱区资源与环境, 2013,27(6):41-47.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[10] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[13] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[14] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[15] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
阅读次数
全文


摘要