地球科学进展 ›› 2020, Vol. 35 ›› Issue (8): 848 -862. doi: 10.11867/j.issn.1001-8166.2020.064

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原新生代南北走向裂谷研究进展
张佳伟 1( ),李汉敖 2,张会平 1,徐心悦 1   
  1. 1.中国地震局地质研究所地震动力学国家重点实验室,北京 100029
    2.中国地质大学(北京)生物地质与环境地质国家重点实验室,北京 100083
  • 收稿日期:2020-05-28 修回日期:2020-07-20 出版日期:2020-08-10
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“碰撞以来古地理格局与构造地貌过程”(2019QZKK0704);国家自然科学基金项目“西藏冈底斯山弧高海拔古地貌开始形成时间”(41902121)

Research Progress in Cenozoic N-S Striking Rifts in Tibetan Plateau

Jiawei Zhang 1( ),Han'ao Li 2,Huiping Zhang 1,Xinyue Xu 1   

  1. 1.State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China
    2.State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences (Beijing),Beijing 100083,China
  • Received:2020-05-28 Revised:2020-07-20 Online:2020-08-10 Published:2020-09-15
  • About author:Zhang Jiawei (1990-), male, Yantai County, Shandong Province, Postdoctoral fellow. Research areas include basin research and low-temperature thermochronology. E-mail: jiawei@ies.ac.cn
  • Supported by:
    Projected supported by the Second Tibetan Plateau Scientific Expedition and Research program “Paleogeography and geomorphology process since the collision”(2019QZKK0704);The National Natural Science Foundation of China “Age constraints on the onset of high-altitude paleogeomorphology of the Gangdese Mountain, Tibet”(41902121)

青藏高原新生代南北走向裂谷的形成是印度—欧亚大陆碰撞后持续挤压造山的重要产物,其形成和演化对于理解青藏高原的生长具有重要意义。近年来,运用地质年代学、构造地质学、岩石地球化学和地球物理探测等手段对南北走向裂谷的启动时间、形成机制和演化过程进行了深入研究,但对于青藏高原南北走向裂谷的认识仍难以达成共识。对近年来青藏高原南北走向裂谷的拉张时间、形成机制及其与高原深部圈层的关系等方面的研究现状和存在问题进行了综述:南北走向裂谷主要拉张时期为中新世;其成因复杂,不同时期可能受控于不同机制;南北走向裂谷与高原内部钾质、超钾质岩具有密切成因联系,其分布特征可能受高导低速体影响。基于现有认识,更精确的年代学约束、深部过程探测以及数值模拟是今后南北走向裂谷研究的发展趋势。

The formation of the Cenozoic N-S striking rifts in the Tibetan Plateau is the consequence of continuous contraction after the India-Asia collision. Its formation and evolution are of great significance for understanding the growth of the Tibetan Plateau. In recent years, geochronology, structural geology, geochemistry and geophysical exploration have been used to study the onset timing, mechanism and evolution process of the N-S striking rifts, and the N-S striking rifts are related to the deep dynamics in Tibet. However, it is still difficult to reach a consensus on the understanding of the N-S striking rifts in the Tibetan Plateau. This paper summarized the research status and existing problems on the onset timing, mechanism and their relationship with the deep layer of the plateau: the main extension period of the N-S striking rifts is Miocene; mechanisms controlling its formation are complex and may be various in different periods; the N-S striking rifts have a close genetic relationship with potassium and ultrapotassic rocks in the plateau, and their distribution may be affected by high-conductivity and low-velocity bodies. Based on existing knowledge, more precise geochronological constraints, deep process detection, and numerical modeling will be the future development trends in the study of N-S striking rifts.

中图分类号: 

图1 青藏高原南北走向裂谷分布、初始拉张时间及主要构造活动速率(据参考文献[ 6 , 7 ]修改)
黑色圆数字代表南北走向裂谷编号,1:Leo Pargil,2:Gular Mandhata,3:隆格尔,4:Thakkola,5:当惹雍错—孔错,6:申扎—定结,7:亚东—谷露,8:沃卡—错那,9:双湖;编号旁红色斜体数字(单位:Ma)代表裂谷初始拉张时间;蓝色数字代表主要构造活动速率(单位:mm/a) [ 8 , 9 ]
Fig.1 Distribution, onset timing of N-S striking rifts and slip rates of main structures in Tibet (modified after references [6,7])
The black round numbers represent N-S striking rifts, 1: Leo Pargil, 2: Gular Mandhata, 3: Lunggar, 4: Thakkola, 5: Tangra Yum Co-Kong Co, 6: Xainza-Dinggye, 7: Yadong-Gulu, 8: Woka-Cuona, 9: Shuanghu; The red italic numbers in Ma next to these numbers represent onset timing of E-W extension; Blue numbers represent slip rates of main structures (unit:mm/a) [ 8 , 9 ]
表1 青藏高原南北走向裂谷初始拉张时间
Table 1 Onset timing of N-S striking rifts in Tibet
图2 南北走向裂谷成因模式(据参考文献[ 15 , 85 ]修改)
KLF:喀喇昆仑断裂;WHS:西构造结;EHS:东构造结
Fig.2 Theoretical models for the formation of N-S striking rifts (modified after references [15, 85])
KLF: Karakoram Fault; WHS: Western Himalayan Syntaxis; EHS: Eastern Himalayan Syntaxis
图3 南北走向裂谷板片撕裂模型(据参考文献[ 93 , 94 ]修改)
(a)印度岩石圈板片撕裂为不同的角度;(b)印度岩石圈板片撕裂角度东西两侧较缓,中部较陡;MBT:主边界断裂;MFT:主前锋断裂;MCT:主中央断裂;STDS:藏南拆离系;ZRT:泽当—仁布断裂;IYS:雅鲁藏布江缝合带;YRR:亚热裂谷带;LGR:隆格尔裂谷带;TYR:当惹雍错裂谷带;PXR:申扎裂谷带;YGR:亚东—谷露裂谷带;CR:错那裂谷带
Fig.3 Slab tearing model for the formation of N-S striking rifts (modified after references [93, 94])
(a) Slab tearing of the Indian lithosphere shows differential subduction angles; (b) Slab tearing of the Indian lithosphere shows shallow angles in the east and west and deep angles in the middle;MBT: Main Boundary Thrust; MFT: Main Frontal Thrust; MCT: Main Central Thrust; STDS: Southern Tibetan Detachment Systems; ZRT: Zedong-Renbu Thrust; IYS: Indus-Yarlung Suture; YRR: Yari Rift; LGR: Lunggar Rift; TYR: Tangra Yum Co Rift; PXR: Pumqu-Xianza Rift; YGR: Yadong-Gulu Rift; CR: Cuona Rift
图4 青藏高原低速带平面分布(a)及其东西向横剖面(b)(据参考文献[ 94 ]修改)
JS:金沙江缝合带;BNS:班公湖—怒江缝合带;IYS:雅鲁藏布江缝合带;YRR:亚热裂谷带;LGR:隆格尔裂谷带;TYR:当惹雍错裂谷带;PXR:申扎裂谷带;YGR:亚东—谷露裂谷带;CR:错那裂谷带
Fig.4 Distribution of low-velocity areas in Tibet (a) and longitudinal cross section (b) (modified after reference [ 94 ])
JS: Jinsha Suture; BNS: Bangong-Nujiang Suture; IYS: Indus-Yarlung Suture; YRR: Yari Rift; LGR: Lunggar Rift; TYR: Tangra Yum Co Rift; PXR: Pumqu-Xianza Rift; YGR: Yadong-Gulu Rift; CR: Cuona Rift
图5 青藏高原南北走向裂谷与相关岩浆岩分布关系
1:Leo Pargil;2:Gular Mandhata;3:隆格尔;4:Thakkola;5:当惹雍错—孔错;6:申扎—定结;7:亚东—谷露;8:沃卡—错那;9:双湖;ALT:阿尔金断裂;KF:昆仑断裂;KLF:喀喇昆仑断裂;JF:嘉丽断裂;JS:金沙江缝合带;BNS:班公湖—怒江缝合带;IYS:雅鲁藏布江缝合带
Fig. 5 Distribution of N-S striking rifts and related magmatic rocks in Tibet
1: Leo Pargil; 2: Gular Mandhata; 3: Lunggar; 4: Thakkola; 5: Tangra Yum Co-Kong Co; 6: Xainza-Dinggye; 7: Yadong-Gulu; 8: Woka-Cuona; 9: Shuanghu: ALT: Altyn Tagh Fault; KF: Kunlun Fault; KLF: Karakoram Fault; JF: Jiali Fault; JS: Jinsha Suture; BNS: Bangong-Nujiang Suture; IYS: Indus-Yarlung Suture
图6 青藏高原裂谷盆地演化过程(据参考文献[ 70 ]修改)
(a)裂谷初期为内流半地堑盆地,受犁式高角度正断层控制,向下延伸到近水平的糜棱岩剪切带;(b)随着伸展量增加,构造卸载导致下盘均衡反弹,同时正断层在中上地壳向上挠曲;(c)在伸展量最大的区域的均衡反弹导致裂谷盆地抬升和剥蚀,在盆地内形成分水岭
Fig. 6 Progressive development of rifts in Tibet (modified after reference [ 70 ])
(a) The rifts initiate as internal half-graben basins, bounded by a listric high-angle normal fault that soles into a subhorizontal mylonitic shear zone; (b) With increasing extension magnitude, tectonic unloading results in isostatic rebound of the footwall, as well as upwarping of the normal fault in the mid-upper crust; (c) Footwall isostatic rebound in areas of maximum extension results in uplift and incision of the rift basin and development of an intra-basinal drainage divide
1 Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4 201): 419-426.
2 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
3 Wang Guocan, Zhang Kexin, Cao Kai, et al. Expanding processes of the Qinghai-Tibet Plateau during Cenozoic: An insight from spatio-temporal difference of uplift[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(5): 713-727.
王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 713-727.
4 Zhang Kexin, Wang Guocan, Luo Mansheng, et al. Evolution of tectonic lithofacies paleogeography of Cenozoic of Qinghai-Tibet Plateau and its response to uplift of the plateau[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(5): 697-712.
张克信, 王国灿, 骆满生, 等. 青藏高原新生代构造岩相古地理演化及其对构造隆升的响应[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 697-712.
5 Zhang Kexin, Wang Guocan, Chen Fenning, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(5): 583-597.
张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 583-597.
6 Li Y, Wang C, Dai J, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review[J]. Earth-Science Reviews, 2015, 143: 36-61.
7 Hager C. Integrated Tectonic and Quantitative Thermochronometric Investigation of The Xainza Rift, Tibet[D]. Lawrence: University of Kansas, 2014.
8 Wu Z, Ye P, Barosh P J, et al. The October 6, 2008 MW 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 2011, 40(4): 943-957.
9 Guanghao Ha. Normal Faulting of Central-Southern Yadong-Gulu Rift Since Late Cenozoic, Southern Tibet[D]. Beijing: Chinese Academy of Geologecal Sciences, 2019.
哈广浩. 藏南亚东—谷露裂谷中—南段晚新生代正断层作用[D]. 北京: 中国地质科学院, 2019.
10 Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B11): 5 361-5 375.
11 Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B14): 13 803-13 872.
12 Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5 052): 1 663-1 670.
13 Taylor M, Yin A, Ryerson F J, et al. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 2003, 22(4). DOI:10.1029/2002TC001361.
doi: 10.1029/2002TC001361    
14 Kapp P, Guynn J H. Indian punch rifts Tibet[J]. Geology, 2004, 32(11): 993-996.
15 Styron R H, Taylor M H, Murphy M A. Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya[J]. Geosphere, 2011, 7(2): 582-596.
16 Zhang Jinjiang, Ding Lin. East-west extension in Tibetan Plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 2003, 38(2): 179-189.
张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2): 179-189.
17 Li Yalin, Wang Chengshan, Yi Haisheng, et al. A discussion on several problems regarding to the Cenozoic grabens in the Qinghai-Tibet Plateau[J]. Geological Review, 2005, 51(5): 493-501.
李亚林, 王成善, 伊海生, 等. 青藏高原新生代地堑构造研究中几个问题的讨论[J]. 地质论评, 2005, 51(5): 493-501.
18 CaiBayangzeng, Zhao Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research, 2018, 41(1): 14-21.
才巴央增, 赵俊猛. 藏南裂谷系的研究综述[J]. 地震研究, 2018, 41(1): 14-21.
19 Huang Feipeng, Ren Junjie, Yanwu Lü, et al. Late quaternary slip rate of the Xiugou segment, eastern Kunlun fault zone[J]. Advances in Earth Science, 2018, 33(3): 321-332.
黄飞鹏, 任俊杰, 吕延武, 等. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
20 Armijo R, Tapponnier P, Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B3): 2 787-2 838.
21 Han Tonglin. Active tectonic belts in Tibet and their control on earthquakes[J]. Acta Geologica Sinica, 1986, 60(4): 332-339.
韩同林. 试论西藏活动构造带及其对地震的控制作用[J]. 地质学报, 1986, 60(4): 332-339.
22 Tapponnier P, Mercier J, Proust F, et al. The Tibetan side of the India-Eurasia collision[J]. Nature, 1981, 294(5 840): 405-410.
23 Wu Zhonghai, Zhang Yongshuang, Hu Daogong, et al. Quaternary normal faulting and its dynamic mechanism of the Cona-Nariyong Co graben in south-eastern Tibet[J]. Quaternary Sciences, 2008(2): 232-242.
吴中海, 张永双, 胡道功, 等. 西藏错那—拿日雍错地堑的第四纪正断层作用及其形成机制探讨[J]. 第四纪研究, 2008(2): 232-242.
24 Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3): 658-676.
25 Ha G, Wu Z, He L, et al. Initial rifting age of the nearly N-S rifts in southern Tibetan plateau: New evidence from the age limit of the early sediments[J]. Acta Geologica Sinica, 2017, 91(2): 739-740.
26 Cao Shenghua, Li Dewei, Yu Zhongzhen, et al. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet[J]. Earth Science—Journal of China University of Geosciences, 2009, 18(6): 914-920.
曹圣华, 李德威, 余忠珍, 等. 西藏冈底斯当惹雍错—许如错南北向地堑的特征及成因[J]. 地球科学: 中国地质大学学报, 2009, 18(6): 914-920.
27 Pan Y, Kidd W S F. Nyainqentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plateau[J]. Geology, 1992, 20(9): 775-778.
28 Styron R, Taylor M, Sundell K. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 2015, 8(2): 131-134.
29 Yin A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21 745-21 759.
30 England P, Houseman G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research, 1989, 94(B12): 17 561-17 579.
31 Hou Z, Gao Y, Qu X, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.
32 Wang G, Wei W, Ye G, et al. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: New insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
33 Li Dewei. A new model for uplifting mechanism of Qinghai-Tibet Plateau[J]. Earth Science—Journal of China University of Geosciences, 2003, 28(6): 593-600.
李德威. 青藏高原隆升机制新模式[J]. 地球科学: 中国地质大学学报, 2003, 28(6): 593-600.
34 Wolff R, Hetzel R, Dunkl I, et al. High-angle normal faulting at the Tangra Yumco graben (southern Tibet) since ~15 Ma[J]. The Journal of Geology, 2019, 127(1): 15-36.
35 Labrousse L, Huet B, Le Pourhiet L, et al. Rheological implications of extensional detachments: Mediterranean and numerical insights[J]. Earth-Science Reviews, 2016, 161: 233-258.
36 Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
37 Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(6 432): 50-54.
38 Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature, 1995, 374(6 517): 49-52.
39 Williams H, Turner S, Kelley S, et al. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342.
40 Mitsuishi M, Wallis S R, Aoya M, et al. E-W extension at 19Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 325/326: 10-20.
41 Wang Q, Wyman D A, Li Z, et al. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift?[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 205-216.
42 Zheng G, Wang H, Wright T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9 290-9 312.
43 Molnar P, Lyon-Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153.
44 Blisniuk P M, Hacker B R, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6 847): 628-632.
45 Yin A, Kapp P A, Murphy M A, et al. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 1999, 27(9): 787-790.
46 Wang Q, Wyman D A, Xu J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 158-171.
47 Ou Q, Wang Q, Wyman D A, et al. Eocene adakitic porphyries in the central-northern Qiangtang block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1 025-1 053.
48 Lai S, Qin J. Adakitic rocks derived from the partial melting of subducted continental crust: Evidence from the Eocene volcanic rocks in the northern Qiangtang block[J]. Gondwana Research, 2013, 23(2): 812-824.
49 Wang H, Wright T J, Liu-Zeng J, et al. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 2019, 46(10): 5 170-5 179.
50 Sundell K E, Taylor M H, Styron R H, et al. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 2013, 32(5): 1 454-1 479.
51 Dewane T J, Stockli D F, Hager C, et al. Timing of Cenozoic EW extension in the Tangra Yum Co-Kung Co rift, south-central Tibet[C]//American Geophysical Union Fall Meeting Abstracts, 2006: T34C-04.
52 Hager C, Stockli D, Dewane T, et al. Anatomy and crustal evolution of the central Lhasa terrane (S-Tibet) revealed by investigations in the Xainza rift[C]//European Geosciences Union General Assembly Conference Abstracts, 2009: 11 346.
53 Stockli D F, Taylor M, Yin A, et al. Late Miocene-Pliocene inception of ew extension in tibet as evidenced by Apatite (U-Th)/He data[C]//Geological Society of America Abstracts with Programs. 2002, 34(6): 411.
54 Thiede R C, Arrowsmith J R, Bookhagen B, et al. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India[J]. Geological Society of America Bulletin, 2006, 118(5): 635-650.
55 Hintersberger E, Thiede R C, Strecker M R, et al. East-west extension in the NW Indian Himalaya[J]. Geological Society of America Bulletin, 2010, 122(9/10): 1 499-1515.
56 Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4): 428-447.
57 Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28(4): 339-342.
58 Lee J, Hager C, Wallis S R, et al. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 2011, 30(2). DOI:10.1029/2010TC002745.
doi: 10.1029/2010TC002745    
59 Mahéo G, Leloup P H, Valli F, et al. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben[J]. Earth and Planetary Science Letters, 2007, 256(1): 233-243.
60 Kali E, Van der Woerd J, Arnaud N, et al. Morphologic and geochronological constraints on the long (>Ma) and short (10-100kyr) term vertical rates on south Tibetan normal faults[C]//European Geosciences Union General Assembly Conference Abstracts. Vienna, Austria, 2009: 9 743.
61 Jessup M, Newell D, Cottle J, et al. Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet-Nepal[J]. Geology, 2008, 36(7): 587-590.
62 Kali E, Leloup P H, Arnaud N, et al. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models[J]. Tectonics, 2010, 29(2). DOI:10.1029/2009TC002551.
doi: 10.1029/2009TC002551    
63 Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 1997, 25(6): 543-546.
64 Ratschbacher L, Krumrei I, Blumenwitz M, et al. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 2011, 353(1): 127-163.
65 Wu Zhonghai, Zhang Yongshuang, Hu Daogong, et al. The Quaternary normal faulting of the Cona-Oiga rift[J]. Seismology and Geology, 2008, 30(1): 144-160.
吴中海, 张永双, 胡道功, 等. 藏南错那—沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 2008, 30(1): 144-160.
66 Wu Zhonghai, Zhao Xitao, Wu Zhenhan, et al. Active faults and their kinematic feature at the Amdo-Tsona graben, central Xizang[J]. Quaternary Sciences, 2005, 25(4): 490-502.
吴中海, 赵希涛, 吴珍汉, 等. 西藏安多—错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J]. 第四纪研究, 2005, 25(4): 490-502.
67 McCaffrey R, Nabelek J. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet Plateau[J]. Geology, 1998, 26(8): 691-694.
68 Chen Q, Freymueller J T, Wang Q, et al. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1). DOI:10.1029/2002JB002151.
doi: 10.1029/2002JB002151    
69 Cogan M J, Nelson K D, Kidd W S F, et al. Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data[J]. Tectonics, 1998, 17(1): 46-61.
70 Kapp P, Taylor M, Stockli D, et al. Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet[J]. Geology, 2008, 36(1): 7-10.
71 Jackson J A, White N J. Normal faulting in the upper continental crust: Observations from regions of active extension[J]. Journal of Structural Geology, 1989, 11(1): 15-36.
72 Elliott J, Walters R, England P, et al. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 2010, 183(2): 503-535.
73 Wang H, Elliott J R, Craig T J, et al. Normal faulting sequence in the Pumqu-Xainza Rift constrained by InSAR and teleseismic body-wave seismology[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 2 947-2 963.
74 Wernicke B. Low-angle normal faults and seismicity: A review[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B10): 20 159-20 174.
75 Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6 246): 163-166.
76 Hoorn C, Ohja T, Quade J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan zone (Neogene, central Nepal)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3): 133-161.
77 Prell W L, Murray D W, Clemens S C, et al. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the western Arabian Sea drilling program[J]. Synthesis of Results from Scientific Drilling in the Indian Ocean, 1992, 70: 447-469.
78 Ha G, Wu Z, He L, et al. Late Cenozoic sedimentary evolution of Pagri-Duoqing Co graben, southern end of Yadong-Gulu rift, southern Tibet[J]. Acta Geologica Sinica, 2018, 92(3): 972-987.
79 He Lin, Wu Zhonghai, Guanghao Ha, et al. Comparative analysis on the magnetic strata developed in the late Cenozoic basins in the southern Tibet Plateau and its adjacent areas[J]. Journal of Geomechanics, 2016, 22(1): 135-151.
何林, 吴中海, 哈广浩, 等. 藏南及邻区典型晚新生代盆地磁性地层研究现状与时代对比分析[J]. 地质力学学报, 2016, 22(1): 135-151.
80 Guanghao Ha, Wu Zhonghai, He Lin. Late Cenozoic sedimentary strata of Qiongduojiang graben, south Tibet: Preliminary constraint on the initial fifting age of the SN- trending rift[J]. Acta Geologica Sinica, 2018, 92(10): 2 051-2 067.
哈广浩, 吴中海, 何林. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 2018, 92(10): 2 051-2 067.
81 Zhao Zhidan, Mo Xuanxue, Nomade S, et al. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan Plateau: Spatial and temporal distribution and its' implications[J]. Acta Petrologica Sinica, 2006, 22(4): 787-794.
赵志丹, 莫宣学, Nomade S, 等. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006, 22(4): 787-794.
82 Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1): 45-71.
83 Wang Xiuxi. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 2017, 32(3): 234-244.
王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
84 Wang C, Dai J, Zhao X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 2014, 621: 1-43.
85 Sundell K E. Thermochronometric Analysis of the North Lunggar Rift: Implications for the Timing of Extension Initiation and Structural Style of Deformation in Southern Tibet[D]. Lawrence: University of Kansas, 2011.
86 Tapponnier P, Peltzer G, Dain A Y L, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
87 Klootwijk C T, Conaghan P J, Powell C M. The Himalayan Arc: Large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 1985, 75(2): 167-183.
88 Li D, Yin A. Orogen-parallel, active left-slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 258-267.
89 Murphy M A, Copeland P. Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen[J]. Tectonics, 2005, 24(4). DOI:10.1029/2004TC001659.
doi: 10.1029/2004TC001659    
90 Murphy M A, Saylor J E, Ding L. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history[J]. Earth and Planetary Science Letters, 2009, 282(1): 1-9.
91 McCaffrey R. Estimates of modern arc-parallel strain rates in fore arcs[J]. Geology, 1996, 24(1): 27-30.
92 McCallister A T, Taylor M H, Murphy M A, et al. Thermochronologic constraints on the late Cenozoic exhumation history of the Gurla Mandhata metamorphic core complex, southwestern Tibet[J]. Tectonics, 2014, 33(2): 27-52.
93 Chen Y, Li W, Yuan X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
94 Li J, Song X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8 296-8 300.
95 Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/3): 25-51.
96 Hou Z, Zhang H, Pan X, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1/2): 21-45.
97 Hou Z, Yang Z, Lu Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
98 Liang X, Chen Y, Tian X, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443: 162-175.
99 Tian X, Chen Y, Tseng T, et al. Weakly coupled lithospheric extension in southern Tibet[J]. Earth and Planetary Science Letters, 2015, 430: 171-177.
100 Xu Z, Wang Q, Pêcher A, et al. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 2013, 32(2): 191-215.
101 Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results[J]. Science, 1996, 274(5 293): 1 684-1 688.
102 Wei W, Unsworth M, Jones A, et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science, 2001, 292(5 517): 716-719.
103 Unsworth M J, Jones A G, Wei W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7 064): 78-81.
104 Zhao Wenjin, Wu Zhenhan, Shi Danian, et al. Comprehensive deep profiling of Tibetan Plateau in the INDEPTH project[J]. Acta Geoscientica Sinica, 2008, 29(3): 328-342.
赵文津, 吴珍汉, 史大年, 等. 国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J]. 地球学报, 2008, 29(3): 328-342.
105 Zhao W, Kumar P, Mechie J, et al. Tibetan plate overriding the Asian plate in central and northern Tibet[J]. Nature Geoscience, 2011, 4(12): 870-873.
106 Zhao Wenjin. A discussion on the regional tectonic-magmatic activity and the metallogensis of Gangdise porphyry copper belt based on the deep structure of continent-continent collision belt in southern Tibet[J]. Acta Geoscientica Sinica, 2016, 37(1): 7-24.
赵文津. 从藏南陆—陆碰撞带深部结构构造演化探讨斑岩铜矿的成岩成矿问题[J]. 地球学报, 2016, 37(1): 7-24.
107 Nábělek J, Hetényi G, Vergne J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5 946): 1 371-1 374.
108 Gao R, Lu Z, Klemperer S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
109 Pang Y, Zhang H, Gerya T V, et al. The mechanism and dynamics of N-S rifting in southern Tibet: Insight from 3-D thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 859-877.
110 Chung S-L, Chu M-F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196.
111 Chung S-L, Chu M-F, Ji J, et al. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 2009, 477(1/2): 36-48.
112 Liu D, Zhao Z, Zhu D, et al. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time[J]. Geology, 2014, 42(1): 43-46.
113 Liu D, Zhao Z, Zhu D, et al. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence[J]. Geochimica Et Cosmochimica Acta, 2014, 143: 207-231.
114 Cheng Z, Guo Z. Post-collisional ultrapotassic rocks and mantle xenoliths in the Sailipu volcanic field of Lhasa terrane, south Tibet: Petrological and geochemical constraints on mantle source and geodynamic setting[J]. Gondwana Research, 2017, 46: 17-42.
115 Li Y, Li X, Wang C, et al. Miocene adakitic intrusions in the Zhongba terrane: Implications for the origin and geochemical variations of post-collisional adakitic rocks in southern Tibet[J]. Gondwana Research, 2017, 41: 65-76.
116 Tian S, Yang Z, Hou Z, et al. Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SW Tibet[J]. Gondwana Research, 2017, 41: 29-50.
117 Yin A, Taylor M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1 798-1 821.
118 Wang Q, Hawkesworth C J, Wyman D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7(1): 1-11.
119 Liu D, Zhao Z, DePaolo D J, et al. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian Plate[J]. Lithos, 2017, 268/271: 48-64.
120 Liu M, Yang Y. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8). DOI:10.1029/2002JB002248.
doi: 10.1029/2002JB002248    
121 Taylor M H, Kapp P A, Horton B K. Basin response to active extension and strike-slip deformation in the hinterland of the Tibetan Plateau [C]//Busby C, Azor A. Tectonics of Sedimentary Basins. New Jersey: John Wiley and Sons, 2011: 445-460.
[1] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[2] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6): 648-655.
[3] 朱介寿;曹家敏;蔡学林;严忠琼. 欧亚大陆及西太平洋边缘海岩石圈结构[J]. 地球科学进展, 2004, 19(3): 387-392.
[4] 朱介寿,曹家敏,蔡学林,严忠琼. 中国及邻近陆域海域地球内部三维结构及动力学研究[J]. 地球科学进展, 2003, 18(4): 497-503.
阅读次数
全文


摘要