1 |
Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4 201): 419-426.
|
2 |
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
|
3 |
Wang Guocan, Zhang Kexin, Cao Kai, et al. Expanding processes of the Qinghai-Tibet Plateau during Cenozoic: An insight from spatio-temporal difference of uplift[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(5): 713-727.
|
|
王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 713-727.
|
4 |
Zhang Kexin, Wang Guocan, Luo Mansheng, et al. Evolution of tectonic lithofacies paleogeography of Cenozoic of Qinghai-Tibet Plateau and its response to uplift of the plateau[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(5): 697-712.
|
|
张克信, 王国灿, 骆满生, 等. 青藏高原新生代构造岩相古地理演化及其对构造隆升的响应[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 697-712.
|
5 |
Zhang Kexin, Wang Guocan, Chen Fenning, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(5): 583-597.
|
|
张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 583-597.
|
6 |
Li Y, Wang C, Dai J, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review[J]. Earth-Science Reviews, 2015, 143: 36-61.
|
7 |
Hager C. Integrated Tectonic and Quantitative Thermochronometric Investigation of The Xainza Rift, Tibet[D]. Lawrence: University of Kansas, 2014.
|
8 |
Wu Z, Ye P, Barosh P J, et al. The October 6, 2008 MW 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 2011, 40(4): 943-957.
|
9 |
Guanghao Ha. Normal Faulting of Central-Southern Yadong-Gulu Rift Since Late Cenozoic, Southern Tibet[D]. Beijing: Chinese Academy of Geologecal Sciences, 2019.
|
|
哈广浩. 藏南亚东—谷露裂谷中—南段晚新生代正断层作用[D]. 北京: 中国地质科学院, 2019.
|
10 |
Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B11): 5 361-5 375.
|
11 |
Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B14): 13 803-13 872.
|
12 |
Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5 052): 1 663-1 670.
|
13 |
Taylor M, Yin A, Ryerson F J, et al. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 2003, 22(4). DOI:10.1029/2002TC001361.
doi: 10.1029/2002TC001361
|
14 |
Kapp P, Guynn J H. Indian punch rifts Tibet[J]. Geology, 2004, 32(11): 993-996.
|
15 |
Styron R H, Taylor M H, Murphy M A. Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya[J]. Geosphere, 2011, 7(2): 582-596.
|
16 |
Zhang Jinjiang, Ding Lin. East-west extension in Tibetan Plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 2003, 38(2): 179-189.
|
|
张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2): 179-189.
|
17 |
Li Yalin, Wang Chengshan, Yi Haisheng, et al. A discussion on several problems regarding to the Cenozoic grabens in the Qinghai-Tibet Plateau[J]. Geological Review, 2005, 51(5): 493-501.
|
|
李亚林, 王成善, 伊海生, 等. 青藏高原新生代地堑构造研究中几个问题的讨论[J]. 地质论评, 2005, 51(5): 493-501.
|
18 |
CaiBayangzeng, Zhao Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research, 2018, 41(1): 14-21.
|
|
才巴央增, 赵俊猛. 藏南裂谷系的研究综述[J]. 地震研究, 2018, 41(1): 14-21.
|
19 |
Huang Feipeng, Ren Junjie, Yanwu Lü, et al. Late quaternary slip rate of the Xiugou segment, eastern Kunlun fault zone[J]. Advances in Earth Science, 2018, 33(3): 321-332.
|
|
黄飞鹏, 任俊杰, 吕延武, 等. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
|
20 |
Armijo R, Tapponnier P, Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B3): 2 787-2 838.
|
21 |
Han Tonglin. Active tectonic belts in Tibet and their control on earthquakes[J]. Acta Geologica Sinica, 1986, 60(4): 332-339.
|
|
韩同林. 试论西藏活动构造带及其对地震的控制作用[J]. 地质学报, 1986, 60(4): 332-339.
|
22 |
Tapponnier P, Mercier J, Proust F, et al. The Tibetan side of the India-Eurasia collision[J]. Nature, 1981, 294(5 840): 405-410.
|
23 |
Wu Zhonghai, Zhang Yongshuang, Hu Daogong, et al. Quaternary normal faulting and its dynamic mechanism of the Cona-Nariyong Co graben in south-eastern Tibet[J]. Quaternary Sciences, 2008(2): 232-242.
|
|
吴中海, 张永双, 胡道功, 等. 西藏错那—拿日雍错地堑的第四纪正断层作用及其形成机制探讨[J]. 第四纪研究, 2008(2): 232-242.
|
24 |
Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3): 658-676.
|
25 |
Ha G, Wu Z, He L, et al. Initial rifting age of the nearly N-S rifts in southern Tibetan plateau: New evidence from the age limit of the early sediments[J]. Acta Geologica Sinica, 2017, 91(2): 739-740.
|
26 |
Cao Shenghua, Li Dewei, Yu Zhongzhen, et al. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet[J]. Earth Science—Journal of China University of Geosciences, 2009, 18(6): 914-920.
|
|
曹圣华, 李德威, 余忠珍, 等. 西藏冈底斯当惹雍错—许如错南北向地堑的特征及成因[J]. 地球科学: 中国地质大学学报, 2009, 18(6): 914-920.
|
27 |
Pan Y, Kidd W S F. Nyainqentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plateau[J]. Geology, 1992, 20(9): 775-778.
|
28 |
Styron R, Taylor M, Sundell K. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 2015, 8(2): 131-134.
|
29 |
Yin A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21 745-21 759.
|
30 |
England P, Houseman G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research, 1989, 94(B12): 17 561-17 579.
|
31 |
Hou Z, Gao Y, Qu X, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.
|
32 |
Wang G, Wei W, Ye G, et al. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: New insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
|
33 |
Li Dewei. A new model for uplifting mechanism of Qinghai-Tibet Plateau[J]. Earth Science—Journal of China University of Geosciences, 2003, 28(6): 593-600.
|
|
李德威. 青藏高原隆升机制新模式[J]. 地球科学: 中国地质大学学报, 2003, 28(6): 593-600.
|
34 |
Wolff R, Hetzel R, Dunkl I, et al. High-angle normal faulting at the Tangra Yumco graben (southern Tibet) since ~15 Ma[J]. The Journal of Geology, 2019, 127(1): 15-36.
|
35 |
Labrousse L, Huet B, Le Pourhiet L, et al. Rheological implications of extensional detachments: Mediterranean and numerical insights[J]. Earth-Science Reviews, 2016, 161: 233-258.
|
36 |
Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
|
37 |
Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(6 432): 50-54.
|
38 |
Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature, 1995, 374(6 517): 49-52.
|
39 |
Williams H, Turner S, Kelley S, et al. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342.
|
40 |
Mitsuishi M, Wallis S R, Aoya M, et al. E-W extension at 19Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 325/326: 10-20.
|
41 |
Wang Q, Wyman D A, Li Z, et al. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift?[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 205-216.
|
42 |
Zheng G, Wang H, Wright T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9 290-9 312.
|
43 |
Molnar P, Lyon-Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153.
|
44 |
Blisniuk P M, Hacker B R, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6 847): 628-632.
|
45 |
Yin A, Kapp P A, Murphy M A, et al. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 1999, 27(9): 787-790.
|
46 |
Wang Q, Wyman D A, Xu J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 158-171.
|
47 |
Ou Q, Wang Q, Wyman D A, et al. Eocene adakitic porphyries in the central-northern Qiangtang block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1 025-1 053.
|
48 |
Lai S, Qin J. Adakitic rocks derived from the partial melting of subducted continental crust: Evidence from the Eocene volcanic rocks in the northern Qiangtang block[J]. Gondwana Research, 2013, 23(2): 812-824.
|
49 |
Wang H, Wright T J, Liu-Zeng J, et al. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 2019, 46(10): 5 170-5 179.
|
50 |
Sundell K E, Taylor M H, Styron R H, et al. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 2013, 32(5): 1 454-1 479.
|
51 |
Dewane T J, Stockli D F, Hager C, et al. Timing of Cenozoic EW extension in the Tangra Yum Co-Kung Co rift, south-central Tibet[C]//American Geophysical Union Fall Meeting Abstracts, 2006: T34C-04.
|
52 |
Hager C, Stockli D, Dewane T, et al. Anatomy and crustal evolution of the central Lhasa terrane (S-Tibet) revealed by investigations in the Xainza rift[C]//European Geosciences Union General Assembly Conference Abstracts, 2009: 11 346.
|
53 |
Stockli D F, Taylor M, Yin A, et al. Late Miocene-Pliocene inception of ew extension in tibet as evidenced by Apatite (U-Th)/He data[C]//Geological Society of America Abstracts with Programs. 2002, 34(6): 411.
|
54 |
Thiede R C, Arrowsmith J R, Bookhagen B, et al. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India[J]. Geological Society of America Bulletin, 2006, 118(5): 635-650.
|
55 |
Hintersberger E, Thiede R C, Strecker M R, et al. East-west extension in the NW Indian Himalaya[J]. Geological Society of America Bulletin, 2010, 122(9/10): 1 499-1515.
|
56 |
Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4): 428-447.
|
57 |
Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28(4): 339-342.
|
58 |
Lee J, Hager C, Wallis S R, et al. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 2011, 30(2). DOI:10.1029/2010TC002745.
doi: 10.1029/2010TC002745
|
59 |
Mahéo G, Leloup P H, Valli F, et al. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben[J]. Earth and Planetary Science Letters, 2007, 256(1): 233-243.
|
60 |
Kali E, Van der Woerd J, Arnaud N, et al. Morphologic and geochronological constraints on the long (>Ma) and short (10-100kyr) term vertical rates on south Tibetan normal faults[C]//European Geosciences Union General Assembly Conference Abstracts. Vienna, Austria, 2009: 9 743.
|
61 |
Jessup M, Newell D, Cottle J, et al. Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet-Nepal[J]. Geology, 2008, 36(7): 587-590.
|
62 |
Kali E, Leloup P H, Arnaud N, et al. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models[J]. Tectonics, 2010, 29(2). DOI:10.1029/2009TC002551.
doi: 10.1029/2009TC002551
|
63 |
Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 1997, 25(6): 543-546.
|
64 |
Ratschbacher L, Krumrei I, Blumenwitz M, et al. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 2011, 353(1): 127-163.
|
65 |
Wu Zhonghai, Zhang Yongshuang, Hu Daogong, et al. The Quaternary normal faulting of the Cona-Oiga rift[J]. Seismology and Geology, 2008, 30(1): 144-160.
|
|
吴中海, 张永双, 胡道功, 等. 藏南错那—沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 2008, 30(1): 144-160.
|
66 |
Wu Zhonghai, Zhao Xitao, Wu Zhenhan, et al. Active faults and their kinematic feature at the Amdo-Tsona graben, central Xizang[J]. Quaternary Sciences, 2005, 25(4): 490-502.
|
|
吴中海, 赵希涛, 吴珍汉, 等. 西藏安多—错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J]. 第四纪研究, 2005, 25(4): 490-502.
|
67 |
McCaffrey R, Nabelek J. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet Plateau[J]. Geology, 1998, 26(8): 691-694.
|
68 |
Chen Q, Freymueller J T, Wang Q, et al. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1). DOI:10.1029/2002JB002151.
doi: 10.1029/2002JB002151
|
69 |
Cogan M J, Nelson K D, Kidd W S F, et al. Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data[J]. Tectonics, 1998, 17(1): 46-61.
|
70 |
Kapp P, Taylor M, Stockli D, et al. Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet[J]. Geology, 2008, 36(1): 7-10.
|
71 |
Jackson J A, White N J. Normal faulting in the upper continental crust: Observations from regions of active extension[J]. Journal of Structural Geology, 1989, 11(1): 15-36.
|
72 |
Elliott J, Walters R, England P, et al. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 2010, 183(2): 503-535.
|
73 |
Wang H, Elliott J R, Craig T J, et al. Normal faulting sequence in the Pumqu-Xainza Rift constrained by InSAR and teleseismic body-wave seismology[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 2 947-2 963.
|
74 |
Wernicke B. Low-angle normal faults and seismicity: A review[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B10): 20 159-20 174.
|
75 |
Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6 246): 163-166.
|
76 |
Hoorn C, Ohja T, Quade J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan zone (Neogene, central Nepal)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3): 133-161.
|
77 |
Prell W L, Murray D W, Clemens S C, et al. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the western Arabian Sea drilling program[J]. Synthesis of Results from Scientific Drilling in the Indian Ocean, 1992, 70: 447-469.
|
78 |
Ha G, Wu Z, He L, et al. Late Cenozoic sedimentary evolution of Pagri-Duoqing Co graben, southern end of Yadong-Gulu rift, southern Tibet[J]. Acta Geologica Sinica, 2018, 92(3): 972-987.
|
79 |
He Lin, Wu Zhonghai, Guanghao Ha, et al. Comparative analysis on the magnetic strata developed in the late Cenozoic basins in the southern Tibet Plateau and its adjacent areas[J]. Journal of Geomechanics, 2016, 22(1): 135-151.
|
|
何林, 吴中海, 哈广浩, 等. 藏南及邻区典型晚新生代盆地磁性地层研究现状与时代对比分析[J]. 地质力学学报, 2016, 22(1): 135-151.
|
80 |
Guanghao Ha, Wu Zhonghai, He Lin. Late Cenozoic sedimentary strata of Qiongduojiang graben, south Tibet: Preliminary constraint on the initial fifting age of the SN- trending rift[J]. Acta Geologica Sinica, 2018, 92(10): 2 051-2 067.
|
|
哈广浩, 吴中海, 何林. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 2018, 92(10): 2 051-2 067.
|
81 |
Zhao Zhidan, Mo Xuanxue, Nomade S, et al. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan Plateau: Spatial and temporal distribution and its' implications[J]. Acta Petrologica Sinica, 2006, 22(4): 787-794.
|
|
赵志丹, 莫宣学, Nomade S, 等. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006, 22(4): 787-794.
|
82 |
Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1): 45-71.
|
83 |
Wang Xiuxi. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 2017, 32(3): 234-244.
|
|
王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
|
84 |
Wang C, Dai J, Zhao X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 2014, 621: 1-43.
|
85 |
Sundell K E. Thermochronometric Analysis of the North Lunggar Rift: Implications for the Timing of Extension Initiation and Structural Style of Deformation in Southern Tibet[D]. Lawrence: University of Kansas, 2011.
|
86 |
Tapponnier P, Peltzer G, Dain A Y L, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
|
87 |
Klootwijk C T, Conaghan P J, Powell C M. The Himalayan Arc: Large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 1985, 75(2): 167-183.
|
88 |
Li D, Yin A. Orogen-parallel, active left-slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 258-267.
|
89 |
Murphy M A, Copeland P. Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen[J]. Tectonics, 2005, 24(4). DOI:10.1029/2004TC001659.
doi: 10.1029/2004TC001659
|
90 |
Murphy M A, Saylor J E, Ding L. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history[J]. Earth and Planetary Science Letters, 2009, 282(1): 1-9.
|
91 |
McCaffrey R. Estimates of modern arc-parallel strain rates in fore arcs[J]. Geology, 1996, 24(1): 27-30.
|
92 |
McCallister A T, Taylor M H, Murphy M A, et al. Thermochronologic constraints on the late Cenozoic exhumation history of the Gurla Mandhata metamorphic core complex, southwestern Tibet[J]. Tectonics, 2014, 33(2): 27-52.
|
93 |
Chen Y, Li W, Yuan X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
|
94 |
Li J, Song X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8 296-8 300.
|
95 |
Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/3): 25-51.
|
96 |
Hou Z, Zhang H, Pan X, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1/2): 21-45.
|
97 |
Hou Z, Yang Z, Lu Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
|
98 |
Liang X, Chen Y, Tian X, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443: 162-175.
|
99 |
Tian X, Chen Y, Tseng T, et al. Weakly coupled lithospheric extension in southern Tibet[J]. Earth and Planetary Science Letters, 2015, 430: 171-177.
|
100 |
Xu Z, Wang Q, Pêcher A, et al. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 2013, 32(2): 191-215.
|
101 |
Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results[J]. Science, 1996, 274(5 293): 1 684-1 688.
|
102 |
Wei W, Unsworth M, Jones A, et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science, 2001, 292(5 517): 716-719.
|
103 |
Unsworth M J, Jones A G, Wei W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7 064): 78-81.
|
104 |
Zhao Wenjin, Wu Zhenhan, Shi Danian, et al. Comprehensive deep profiling of Tibetan Plateau in the INDEPTH project[J]. Acta Geoscientica Sinica, 2008, 29(3): 328-342.
|
|
赵文津, 吴珍汉, 史大年, 等. 国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J]. 地球学报, 2008, 29(3): 328-342.
|
105 |
Zhao W, Kumar P, Mechie J, et al. Tibetan plate overriding the Asian plate in central and northern Tibet[J]. Nature Geoscience, 2011, 4(12): 870-873.
|
106 |
Zhao Wenjin. A discussion on the regional tectonic-magmatic activity and the metallogensis of Gangdise porphyry copper belt based on the deep structure of continent-continent collision belt in southern Tibet[J]. Acta Geoscientica Sinica, 2016, 37(1): 7-24.
|
|
赵文津. 从藏南陆—陆碰撞带深部结构构造演化探讨斑岩铜矿的成岩成矿问题[J]. 地球学报, 2016, 37(1): 7-24.
|
107 |
Nábělek J, Hetényi G, Vergne J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5 946): 1 371-1 374.
|
108 |
Gao R, Lu Z, Klemperer S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
|
109 |
Pang Y, Zhang H, Gerya T V, et al. The mechanism and dynamics of N-S rifting in southern Tibet: Insight from 3-D thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 859-877.
|
110 |
Chung S-L, Chu M-F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196.
|
111 |
Chung S-L, Chu M-F, Ji J, et al. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 2009, 477(1/2): 36-48.
|
112 |
Liu D, Zhao Z, Zhu D, et al. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time[J]. Geology, 2014, 42(1): 43-46.
|
113 |
Liu D, Zhao Z, Zhu D, et al. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence[J]. Geochimica Et Cosmochimica Acta, 2014, 143: 207-231.
|
114 |
Cheng Z, Guo Z. Post-collisional ultrapotassic rocks and mantle xenoliths in the Sailipu volcanic field of Lhasa terrane, south Tibet: Petrological and geochemical constraints on mantle source and geodynamic setting[J]. Gondwana Research, 2017, 46: 17-42.
|
115 |
Li Y, Li X, Wang C, et al. Miocene adakitic intrusions in the Zhongba terrane: Implications for the origin and geochemical variations of post-collisional adakitic rocks in southern Tibet[J]. Gondwana Research, 2017, 41: 65-76.
|
116 |
Tian S, Yang Z, Hou Z, et al. Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SW Tibet[J]. Gondwana Research, 2017, 41: 29-50.
|
117 |
Yin A, Taylor M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1 798-1 821.
|
118 |
Wang Q, Hawkesworth C J, Wyman D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7(1): 1-11.
|
119 |
Liu D, Zhao Z, DePaolo D J, et al. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian Plate[J]. Lithos, 2017, 268/271: 48-64.
|
120 |
Liu M, Yang Y. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8). DOI:10.1029/2002JB002248.
doi: 10.1029/2002JB002248
|
121 |
Taylor M H, Kapp P A, Horton B K. Basin response to active extension and strike-slip deformation in the hinterland of the Tibetan Plateau [C]//Busby C, Azor A. Tectonics of Sedimentary Basins. New Jersey: John Wiley and Sons, 2011: 445-460.
|