地球科学进展 ›› 2020, Vol. 35 ›› Issue (8): 839 -847. doi: 10.11867/j.issn.1001-8166.2020.070

科学数据? 上一篇    下一篇

科学数据汇聚的模式分析及对我国的发展建议
王卷乐 1, 4( ),石蕾 2,王玉洁 1,高孟绪 2,徐波 2,王超 2,王明明 1,王艳杰 1, 3,周业智 1, 3   
  1. 1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2.国家 科技基础条件平台中心,北京 100862
    3.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
    4.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
  • 收稿日期:2020-05-11 修回日期:2020-07-06 出版日期:2020-08-10
  • 通讯作者: 王卷乐 E-mail:wangjl@igsnrr.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(A类)(XDA19040501);国家科技基础条件平台专项课题“科学数据汇聚的模式与方法研究”(2017DDJ1ZZ15)

Analysis of the Modes of Aggregation of Scientific Data and Proposals for its Development in China

Juanle Wang 1, 4( ),Lei Shi 2,Yujie Wang 1,Mengxu Gao 2,Bo Xu 2,Chao Wang 2,Mingming Wang 1,Yanjie Wang 1, 3,Yezhi Zhou 1, 3   

  1. 1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.National Science and Technology Infrastructure Center, Beijing 100862, China
    3.College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China
    4.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • Received:2020-05-11 Revised:2020-07-06 Online:2020-08-10 Published:2020-09-15
  • Contact: Juanle Wang E-mail:wangjl@igsnrr.ac.cn
  • About author:Wang Juanle (1976-), male, Luoyang City, He’nan Province, Professor. Research areas include scientific data sharing, geographic information systems and remote sensing applications. E-mail: wangjl@igsnrr.ac.cn
  • Supported by:
    the Strategic Priority Research Program (Class A) of the Chinese Academy of Sciences “Big data-driven 'Beautiful China' panoramic evaluation and decision support”(XDA19040501);The Special Foundation of National Science & Technology Infrastructure Center "Research on models and methods of scientific data aggregation"(2017DDJ1ZZ15)

科学数据的汇聚是抢占科学数据这一战略资源上游和竞争高地的重要手段。把握科学数据汇聚模式的国际态势和科学规律,探索适合我国国情的科学数据汇聚模式和方法是当前急需解决的问题。从国际组织、国际科学计划、政府机构和专业数据中心等方面调研分析国内外科学数据汇聚现状,梳理归纳出科学数据汇聚的5种模式,包括科研项目集中向指定数据中心/仓储汇聚模式、科研项目分散向数据中心/仓储汇聚模式、科学家个人以论文出版方式向数据中心/仓储汇聚模式、科研项目/科学家个人向数据共享目录/网络汇聚模式、大数据计算/处理平台和公民科学开放汇聚模式,并对各模式和相应典型案例进行剖析。在此基础上,提出我国科学数据汇聚在科学数据管理办法落实、数据汇聚中心认证、期刊论文数据汇聚、数据汇聚网络构建、国际资源汇聚和数据汇聚全链条建设等6个方面的发展建议。

Scientific data are strategic resources, and the aggregation of scientific data is an important method to seize the upstream and competitive highlands of scientific data. Notably, it is challenging to grasp the international situation and the scientific laws concerning the mode of scientific data aggregation; exploring the modes and methods of scientific data aggregation that are suitable for China's national conditions is also difficult. This paper investigated and analyzed the modes of scientific data aggregation both at home and abroad from the viewpoints of international organizations, international scientific programs, government agencies, and professional data centers. Five modes of scientific data aggregation were summarized, including scientific research projects converging to designated data centers/repositories, scientific research projects dispersing to data centers/repositories, individual scientists submitting datasets to data centers/repositories with published papers, scientific research projects/individual scientists sharing directories/networks, big data computing/processing platform, and citizen science models of open and public convergence. This paper analyzed each mode and the corresponding cases. On this basis, the paper put forward six suggestions for the reasonable aggregation of scientific data in China, including the implementation of the “Measurement of Scientific Data Management”, certification of data aggregation centers, scientific data collection and publishing in journals, construction of data aggregation networks, aggregation of international resources, and construction of the whole data aggregation chain.

中图分类号: 

图1 科学数据汇聚模式分类
Fig.1 Classification of scientific data aggregation mode
1 NOAA Data Management Planning Procedural Directive[EB/OL]. (2015-02-11)[2020-07-05]. .
URL    
2 Wang Juanle, Zhu Junxiang, Yang Yaping, et al. Edifying by data archiving policy of international science and technology research program to China[J]. China Science & Technology Resources Review, 2013, 45(2):17-23.
王卷乐, 祝俊祥, 杨雅萍, 等. 国外科技计划项目数据汇交政策及对我国的启示[J]. 中国科技资源导刊, 2013, 45(2):17-23.
3 Huang Yongwen, Zhang Jianyong, Huang Jinxia, et al. Research on the open research data[J]. New Technology of Library and Information Service, 2013(5):21-27.
黄永文,张建勇,黄金霞, 等.国外开放科学数据研究综述[J].现代图书情报技术, 2013(5):21-27.
4 Wang Juanle, Sun Jiulin, Yang Yaping, et al. A new approach to research data archiving for WDS sustainable data integration in China[J]. Data Science Journal, 2013,12: 120-123.
5 AGU’s Data Policy: History and Context[EB/OL]. (201-09-16)[2020-07-05]..
URL    
6 Finder Repository[EB/OL].(2020-05-07)[2020-07-05]. .
URL    
7 Sun Jiulin. Tactics of dispersed data resources integration and model research[J]. China Science & Technology Resources Review, 2008, 40(3):6-11.
孙九林.分散数据资源整合策略和模式研究[J].中国科技资源导刊,2008, 40(3):6-11.
8 Lin Hai, Wang Juanle. The data archiving work in resource and environment field of National Basic Research Program of China (973 Program) has been officially launched[J]. Advances in Earth Science, 2008, 23(8): 895-896.
林海, 王卷乐.国家重点基础研究发展计划(973)资源环境领域项目数据汇交工作正式启动[J].地球科学进展, 2008, 23(8): 895-896.
9 Shi Lei, Yuan Wei. Some thoughts on the long-term mechanism construction of S&T resources collection[J]. China Science & Technology Resources Review, 2012, 44(4):2-5.
石蕾, 袁伟. 建立科技计划资源汇交长效机制的思考[J].中国科技资源导刊, 2012, 44(4):2-5.
10 Zhu Yunqiang, Sun Kai, Yang Yaping, et al. Data resources collection and reorganization for national special program on basic works for science and technology of China[J]. China Science & Technology Resources Review, 2017, 49(5):12-20.
诸云强, 孙凯, 杨雅萍, 等.科技基础性工作数据资料的汇交与整编[J].中国科技资源导刊,2017,49(5):12-20.
11 Li Xin, Zhuotong Nan, Wu Lizong, et al. Environmental and ecological science data center for West China integration and sharing of environmental and ecological data[J]. Advances in Earth Science, 2008(6):628-637.
李新,南卓铜,吴立宗,等.中国西部环境与生态科学数据中心:面向西部环境与生态科学的数据集成与共享[J].地球科学进展,2008(6):628-637.
12 Wang Jun. American scientific data sharing experience and its implications for NSFC: Case study of NSF and NIH[J]. Bulletin of National Natural Science Foundation of China, 2016(1):69-75.
汪俊. 美国科学数据共享的经验借鉴及其对我国科学基金启示:以NSF和NIH为例[J]. 中国科学基金, 2016(1):69-75.
13 Wang Juanle, Wang Yi, Bu Kun, et al. Practice in the CoreTrustSeal certification of world data center—A case study of WDC-Renewable resources and environment[J]. Journal of Agricultural Big Data, 2019, 1(3):71-81.
王卷乐,王祎,卜坤,等.世界数据系统CoreTrustSeal数据中心认证实践——以WDC可再生资源与环境数据中心为例[J].农业大数据学报,2019,1(3):71-81.
14 EOSDIS Distributed Active Archive Centers DAACs [EB/OL]. [2020-04-28]. .
URL    
15 Wang Wenyan. Data and data management of earth sciences daya distributed active archive centers in NASA[C]//Paper Abstract of 2011 Annual Meeting of Committee of Meteorological Communication and Information Technology, Chinese Meteorological Society and National Meteorological Information Center. Committee of Meteorological Communication and Information Technology, Chinese Meteorological Society, National Meteorological Information Center: Chinese Meteorological Society, 2011:443-450.[
王旻燕. NASA地球科学数据分布式数据存档中心的数据和数据管理[C]//2011年中国气象学会气象通信与信息技术委员会暨国家气象信息中心科技年会论文摘要.中国气象学会气象通信与信息技术委员会、国家气象信息中心:中国气象学会, 2011:443-450.]
16 Wang Juanle, Wang Mingming, Shi Lei, et al. The situation of scientific data management and its enlightenment to Earth Sciences of China[J]. Advances in Earth Science, 2019, 34(3): 306-315.
王卷乐,王明明,石蕾,等. 科学数据管理态势及其对我国地球科学领域的启示[J]. 地球科学进展, 2019, 34(3): 306-315.
17 Li Hongxing, Wu Lizong, Zhuotong Nan, et al. Collaborative publishing of scientific data:Model and implementation[J]. Remote Sensing Technology and Application, 2016, 31(4): 801-808.
李红星,吴立宗,南卓铜,等.科学数据联合出版模式与内容研究[J].遥感技术与应用,2016,31(4):801-808.
18 Huang Guobin, Zheng Xia. Research on content normalization of data paper[J]. Library and Information Service, 2019, 63(22):129-140.
黄国彬,郑霞.数据论文的内容规范性研究[J].图书情报工作,2019,63(22):129-140.
19 JGR:Solid Earth Data & Software Guidance[EB/OL]. [2020-07-18]. .
URL    
20 Enabling Fair Data Project[EB/OL][2020-07-18]. .
URL    
21 Data for Publication Guidelines to Support Author Compliance with Open Data Standards[EB/OL]. [2020-07-20]. .
URL    
22 Li Jianhui, Wu Chao, Zhang Lili, et al. Survey and analysis of scientific data publishing[J/OL]. China Scientific Data, 2016, 1(1): 70-80.
黎建辉, 吴超, 张丽丽, 等. 科学数据出版调查与分析[J/OL]. 中国科学数据, 2016, 1(1): 70-80.
23 PANGAEA[EB/OL]. [2020-04-28]. .
URL    
24 Wang Juanle, Lin Hai, Ran Yingying, et al. A study of Earth System Science data classification for data sharing[J]. Advances in Earth Science, 2014, 29(2):265-267,273-274.
王卷乐, 林海, 冉盈盈, 等.面向数据共享的地球系统科学数据分类探讨[J].地球科学进展, 2014, 29(2):265-267,273-274.
25 Google Earth Engine[EB/OL]. [2020-04-28]. .
URL    
26 Notice of the Ministry of Science and Technology and the Ministry of Finance on Issuing the List of Optimization and Adjustment of National Science and Technology Resource Sharing Service Infrastructure[EB/OL]. (2019-06-05)[2020-07-05]..
URL    
科技部财政部关于发布国家科技资源共享服务平台优化调整名单的通知[EB/OL]. (2019-06-05)[2020-07-05]. .
URL    
27 Han Xuehua, Wang Juanle, Shi Lei, et al. Identification and its inspiration for Netherlands’ Data-Seal-of-Approval in scientific data repositories[J]. China Science & Technology Resources Review, 2018, 50(1): 14-19.
韩雪华,王卷乐,石蕾,等.荷兰数据认可印章科学数据仓储认证及启示[J].中国科技资源导刊,2018,50(1):14-19.
[1] 王卷乐,王明明,石蕾,高孟绪,陈明奇,郑晓欢,王超,王玉洁. 科学数据管理态势及其对我国地球科学领域的启示[J]. 地球科学进展, 2019, 34(3): 306-315.
[2] 葛人峰, 侍茂崇. “船时共享航次计划”——国家自然科学基金委员会的重大创建[J]. 地球科学进展, 2016, 31(4): 428-435.
[3] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[4] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[5] 范锦龙. 地球观测数据卫星分发系统发展综述[J]. 地球科学进展, 2012, 27(7): 712-716.
[6] 王卷乐,杨雅萍,诸云强,宋 佳,朱华忠,冯 敏. "973"计划资源环境领域数据汇交进展与数据分析[J]. 地球科学进展, 2009, 24(8): 947-953.
[7] 王卷乐,孙九林. 世界数据中心(WDC)回顾、变革与展望[J]. 地球科学进展, 2009, 24(6): 612-620.
[8] 李新,南卓铜,吴立宗,冉有华,王建,潘小多,王亮绪,李红星,祝忠明. 中国西部环境与生态科学数据中心:面向西部环境与生态科学的数据集成与共享[J]. 地球科学进展, 2008, 23(6): 628-637.
[9] 诸云强,孙九林. 面向e-GeoScience的地学数据共享研究进展[J]. 地球科学进展, 2006, 21(03): 286-290.
[10] 张耀南;韦五周;程国栋;杨海;景通桥. 寒区旱区特色数据集管理与共享应用[J]. 地球科学进展, 2005, 20(7): 717-723.
[11] 孙枢. 地球数据是地球科学创新的重要源泉——从地球科学谈科学数据共享[J]. 地球科学进展, 2003, 18(3): 334-337.
[12] 罗宗俊,刘闯,王正兴. 美国全球变化研究的法律基础[J]. 地球科学进展, 2003, 18(3): 464-470.
[13] 郭亚曦. 国际全球变化计划与世界数据中心的联合行动——1997年联合数据会议及其启示[J]. 地球科学进展, 1997, 12(6): 574-580.
阅读次数
全文


摘要