1 |
Heimsath A M, Dietrich W E, Nishiizumi K, et al. The soil production function and landscape equilibrium[J]. Nature, 1997, 388(6 640): 358-361.
|
2 |
West A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814.
|
3 |
Perron J T. Climate and the Pace of Erosional Landscape Evolution, in Annual Review of Earth and Planetary Sciences[M]. Palo Alto: Annual Reviews, 2017: 561-591.
|
4 |
Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.
|
5 |
Hartmann J, Moosdorf N. Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—Implications for global scale analysis[J]. Chemical Geology, 2011, 287(3): 125-157.
|
6 |
Filippelli G M. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 391-425.
|
7 |
Li Gaojun. Modeling the late cenozoic marine phosphorus cycle[J]. Quaternary Science, 2010, 30(3):506-514.
|
|
李高军. 晚新生代海洋磷循环模拟[J]. 第四纪研究, 2010, 30(3): 506-514.
|
8 |
Li M Y H, Zhou M-F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong Deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3): 541-568.
|
9 |
Yang Ruiyu, Li Gaojun, Chen Jun. Carbon cycle restrained quantification of weathering depletion in making continental crust[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 155-161.
|
|
杨瑞钰, 李高军, 陈骏. 大陆地壳风化亏损的碳循环限定[J]. 地球科学与环境学报, 2018, 40(2): 155-161.
|
10 |
Li G, Elderfield H. Evolution of carbon cycle over the past 100 million years[J]. Geochimica et Cosmochimica Acta, 2013, 103: 11-25.
|
11 |
Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
|
12 |
Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9 776-97 82.
|
13 |
Riebe C, Kirchner J, Finkel R. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224: 547-562.
|
14 |
Ferrier K, Riebe C, Hahm W. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2 270-2 285.
|
15 |
Anderson S P, Dietrich W E, Brimhall G H. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment[J]. Geological Society of America Bulletin, 2002, 114(9): 1 143-1 158.
|
16 |
Riebe C S, Kirchner J W, Finkel R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4 411-4 427.
|
17 |
Kirchner J W, Finkel R C, Riebe C S, et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales[J]. Geology, 2001, 29(7): 591-594.
|
18 |
Bern C R,Yesavage T. Dual-phase mass balance modeling of small mineral particle losses from sedimentary rock-derived soils[J]. Chemical Geology, 2018, 476: 441-455.
|
19 |
Bern C R, Chadwick O A, Hartshorn A S, et al. A mass-balance model to separate and quantify colloidal and solute redistributions in soil[J]. Chemical Geology, 2011, 282(3): 113-119.
|
20 |
Aguirre A A, Derry L A, Mills T J, et al. Colloidal transport in the Gordon Gulch catchment of the Boulder Creek CZO and its effect on C-Q relationships for silicon[J]. Water Resources Research, 2017, 53(3): 2 368-2 383.
|
21 |
Kurtz A C, Derry L A, Chadwick O A, et al. Refractory element mobility in volcanic soils[J]. Geology, 2000, 28(8): 683-686.
|
22 |
Kim H, Gu X, Brantley S L. Particle fluxes in groundwater change subsurface shale rock chemistry over geologic time[J]. Earth and Planetary Science Letters, 2018, 500: 180-191.
|
23 |
Fu Yuanhe, Li Le, Chen Jun. Application of uranium isotope chronology for partical comminution in the eolian dust system[J]. Advances in Earth Science, 2018, 33(10): 1 034-1 047.
|
|
付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1 034-1 047.
|
24 |
Li Le,Li Laifeng,Li Gaojun. Soil production function at basin scale tested by uranium comminution age in the Tibetan[J]. Quaternary Science,2018, 38(1): 273-277.
|
|
李乐, 李来峰, 李高军. 青藏高原周缘流域尺度土壤产生方程的铀同位素破碎年龄学证据[J]. 第四纪研究, 2018, 38(1): 273-277.
|
25 |
Jourdan F, Féraud G, Bertrand H, et al. Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data[J]. Geology, 2005, 33(9): 745-748.
|
26 |
Fleming A, Summerfield M A, Stone J, et al. Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36Cl: Initial results[J]. Journal of The Geological Society, 1999, 156: 209-212.
|
27 |
Brown R W, Summerfield M A, Gleadow A J W. Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(12): 2 350.
|
28 |
Carroll D M, Bascomb C L. Notes on the Soils of Lesotho[M]. Tolworth, Surrey, England: Land Resources Division, Directorate of Overseas Surveys, 1967: 73.
|
29 |
Li L, Liu X, Li T, et al. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2017, 467: 64-71.
|
30 |
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
|
31 |
DePaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1): 394-410.
|
32 |
Cheng H, Lawrence Edwards R, Shen C-C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371: 82-91.
|
33 |
Chabaux F, Riotte J, Dequincey O. U-Th-Ra fractionation during weathering and river transport[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 533-576.
|
34 |
Li L, Chen J, Chen T, et al. Weathering dynamics reflected by the response of riverine uranium isotope disequilibrium to changes in denudation rate[J]. Earth and Planetary Science Letters, 2018, 500: 136-144.
|
35 |
Chen Y, Hedding D W, Li X, et al. Weathering dynamics of Large Igneous Provinces (LIPs): A case study from the Lesotho Highlands[J]. Earth and Planetary Science Letters, 2020, 530: 115 871.
|
36 |
Ma L, Chabaux F, Pelt E, et al. The effect of curvature on weathering rind formation: Evidence from Uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe[J]. Geochimica et Cosmochimica Acta, 2012, 80: 92-107.
|
37 |
Engelbrecht F, Marean C, Cowling R, et al. Downscaling Last Glacial Maximum climate over southern Africa[J]. Quaternary Science Reviews, 2019, 226: 105 879.
|
38 |
Li G, Hartmann J, Derry L A, et al. Temperature dependence of basalt weathering[J]. Earth and Planetary Science Letters, 2016, 443: 59-69.
|
39 |
Nugent M A, Brantley S L, Pantano C G, et al. The influence of natural mineral coatings on feldspar weathering[J]. Nature, 1998, 395(6 702): 588-591.
|