地球科学进展 ›› 2020, Vol. 35 ›› Issue (8): 826 -838. doi: 10.11867/j.issn.1001-8166.2020.065

研究论文 上一篇    下一篇

土壤中次生与碎屑组分的差异性剥蚀
李旭明( ),李来峰,王浩贤,王野,陈旸( )   
  1. 表生地球化学教育部重点实验室 地球科学与工程学院 南京大学,江苏 南京 210023
  • 收稿日期:2020-05-28 修回日期:2020-07-10 出版日期:2020-08-10
  • 通讯作者: 陈旸 E-mail:xumingli@smail.nju.edu.cn;chenyang@nju.edu.cn
  • 基金资助:
    国家自然科学基金国际合作与交流项目“基于中国和南非玄武岩流域的风化比较学研究”(41761144058);国家自然科学基金重点项目“颗粒破碎铀同位素年代技术的发展及其在风尘系统中的应用”(41730101)

Decoupled Erosion of Authigenic and Detrital Components in Soil

Xuming Li( ),Laifeng Li,Haoxian Wang,Ye Wang,Yang Chen( )   

  1. Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2020-05-28 Revised:2020-07-10 Online:2020-08-10 Published:2020-09-15
  • Contact: Yang Chen E-mail:xumingli@smail.nju.edu.cn;chenyang@nju.edu.cn
  • About author:Li Xuming (1994-), male, Dingzhou City, Hebei Province, Master student. Research areas include chemical weathering and physical erosion at low erosion areas. E-mail: xumingli@smail.nju.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "A comparative study of weathering processes based on the basaltic fields in China and South Africa"(41761144058);"Developing the uranium comminution age in the eolian system and its associated applications"(41730101)

在地表过程研究中,一般以表层土壤可溶元素的亏损程度代表风化强度,以表层土壤粗颗粒矿物中宇生核素的积累计算土壤存留时间,进而推算土壤剥蚀速率。这两种方法都基于一个重要的假设,即土壤中不同组分的一致剥蚀。相对于新鲜基岩,土壤中可溶元素的亏损主要体现在细颗粒次生黏土组分,而碎屑矿物的亏损程度较弱。细颗粒次生黏土的优先剥蚀会导致风化强度的低估,还会导致粗颗粒矿物存留时间大于土壤的总存留时间,从而低估土壤剥蚀速率。最近的研究表明,土壤不同组分可能存在差异性剥蚀。通过莱索托高地玄武岩风化土壤和流域地表水的铀同位素组成验证土壤不同组分是否存在差异性剥蚀。结果表明,碎屑组分在土壤中的存留时间为(543 ± 32) ka,而次生黏土组分的存留时间为(22±11) ka,二者相差一个数量级。次生组分的存留时间与由区域风化通量计算得到的剥蚀速率24~33 t/(km2?a)相匹配,表明次生黏土是土壤剥蚀的主要组成部分。该发现表明土壤中不同组分的差异性剥蚀可能是普遍存在的。次生黏土的优先剥蚀会导致风化强度和剥蚀速率被低估,引起风化通量的估算偏低,进而低估化学风化在全球碳循环中的作用。

In the study of surface processes, it is generally assumed that erosion occurs equally throughout the soil profile so that chemical depletion of the topsoil can represent the intensity of chemical weathering and the duration of surface exposure to cosmogenic radiation can reflects the soil residence time, and then the rate of erosion can be calculated. In comparison with fresh bedrock, the depletion of soluble elements in soil mainly comes from fine-grained secondary clay components, while the depletion degree of detrital minerals is weak. The preferential erosion of fine-grained secondary clay will lead to the underestimation of weathering intensity, and the retention time of detrital mineral will be longer than the total retention time of soil, and thus the soil erosion rate will be underestimated. Based on the uranium isotope comminution ages of soil in the Lesotho Highlands, we found that erosion operates differentially between the detrital and authigenic components of the soil. Uranium isotope comminution ages show a soil residence time of (543±32) ka for the detrital particles. In contrast, soil residence time of the authigenic phases is constrained to be (22±11) ka according to the accumulation of recoiled 234U from the absorbed 238U to river water. The residence time of secondary clay matches with the regional erosion rate 24-33 t/(km2·a) calculated from weathering flux, indicating that secondary clay is the main component of soil erosion. The results indicate that the decoupled erosion of different components in soil may be common. This finding implies that the intensity of weathering based on bulk soil erosion and the rate of soil erosion determined by exposure dating of coarse soil grains may be invalidated due to the preferential erosion of authigenic particles. As a result, a lower estimate of weathering flux may be made, and therefore the role of chemical weathering in the global carbon cycle could be underestimated.

中图分类号: 

图1 莱索托高地采样点分布
(a)总体采样点;(b)低海拔山坡采样点;(c)高海拔山坡采样点
Fig.1 Sampling locations across the Lesotho Highlands
(a) All sampling sites on a topographic map;(b) and (c) are two enlarged inserts showing samples on the low and high elevation hillslope
图2 研究区土壤剖面与20~25 μm颗粒破碎年龄
Fig.2 Soil profile and distribution of comminution age of the 20~25 μm detrital particles in the studied area
图3 20~25 μm颗粒SEM图像
(a)莱索托高地土壤样品20~25 μm颗粒;(b)中国黄土高原黄土样品20~25 μm颗粒
Fig.3 Images under secondary electron microscope show the extracted 20~25 μm detrital particles
(a) The extracted 20~25 μm detrital particles from the soil samples in the Lesotho Highlands;(b) The extracted 20~25 μm detrital particles from the loess deposit on the Chinese Loess Plateau
图4 莱索托高地玄武岩基岩、土壤和河流沉积物20~25 μm颗粒XRD成分分析
Fig.4 X-ray diffraction pattern of the 20~25 μm detrital particles extracted from the samples of bedrock, soil and sediment in the Lesotho Highlands
图5 研究区土壤碎屑物质的粒度分布
粗实线为平均粒度分布,细实线为山坡样品粒度分布
Fig.5 Size distribution of the detrital minerals in soil samples in the studied area
The coarse solid line is the average size distribution, and the fine solid line is the size distribution of topsoil
表1 莱索托高地古老阶地沉积物 20~25 μm颗粒 234U/238U
Table 1 The 234U/238U activity ratio of the 20~25 μm detrital particles extracted from the terrace samples in the Lesotho Highlands
表2 莱索托高地土壤剖面 20~25 μm颗粒的 234U/238U值与破碎年龄
Table 2 The 234U/238U activity ratio and comminution age of the 20~25 μm detrital particles in a soil profile in the Lesotho Highlands
表3 莱索托高地山坡表层土壤与和河流沉积物 20~25 μm颗粒的 234U/238U值与破碎年龄
Table 3 The 234U/238U activity ratio and comminution age of the 20~25 μm detrital particles of samples from the topsoil and river sediment in the Lesotho Highlands
样品来源 样品编号 纬度/°S 经度/°E 海拔/m 234U/238U 2SE T20~25/ka SE
河流沉积物 2018LST01 28.7375 28.4194 2 120 0.918 0.001 546 16
2018LST04 29.2906 28.9900 2 784 0.924 0.001 464 11
2018LST25 29.5533 29.2350 2 999 0.908 0.001 768 30
2018LST27 29.5953 28.7117 2 664 0.964 0.001 152 3
2018LST28 29.5950 28.7136 1 913 0.918 0.001 546 15
2019LST02 28.7699 28.5075 2 397 0.917 0.001 567 16
2019LST14 29.2284 28.9094 2 376 0.944 0.001 274 5
2019LST37 28.8396 28.7544 3 184 0.933 0.001 366 8
2019LST40 28.7645 28.5836 2 730 0.922 0.001 491 12
2019LST41 28.7626 28.5487 2 478 0.925 0.001 453 11
2019LST59 29.0479 28.3126 2 408 0.922 0.001 491 12
2019LST61 29.0202 28.5480 2 855 0.930 0.001 396 9
2019LST63 29.0535 28.5152 2 591 0.923 0.001 478 12
平均值 - - - 0.927 - 461 -
SE - - - 0.004 - 41 -
表土:剖面表土 2018LST31P 29.5219 29.1910 3 482 0.913 0.001 648 20
2018LST35P 29.4683 29.2692 3 470 0.920 0.001 520 14
平均值 - - - 0.917 - 584 -
SE - - - 0.004 - 64 -
表土:低海拔山坡 2019LST48 29.3507 28.4927 2 419 0.918 0.001 583 16
2019LST49 29.3514 28.4920 2 399 0.917 0.001 567 15
2019LST50 29.3513 28.4911 2 382 0.933 0.001 366 7
2019LST51 29.3508 28.4906 2 362 0.936 0.001 339 8
2019LST52 29.3503 28.4900 2 333 0.928 0.001 418 9
2019LST53 29.3497 28.4897 2 310 0.914 0.001 622 20
2019LST55 29.3500 28.4886 2 281 0.926 0.001 441 10
平均值 - - - 0.925 - 477 -
SE - - - 0.003 - 43 -
表土:高海拔山坡 2019LST65 28.8244 28.7445 3 055 0.905 0.001 867 41
2019LST66 28.8231 28.7477 3 080 0.920 0.001 520 13
2019LST67 28.8228 28.7505 3 130 0.927 0.001 429 10
2019LST68 28.8241 28.7544 3 142 0.933 0.001 366 7
2019LST69 28.8249 28.7604 3 211 0.904 0.001 909 45
2019LST70 28.8207 28.7740 3 282 0.911 0.001 686 26
2019LST71 28.8191 28.7693 3 222 0.930 0.001 396 8
2019LST72-1 28.8192 28.7671 3 194 0.910 0.001 711 24
2019LST72-2 28.8169 28.7621 3 194 0.900 0.001 1 154 96
2019LST73 28.8169 28.7594 3 173 0.910 0.001 711 24
2019LST74 28.8196 28.7546 3 163 0.915 0.001 602 18
2019LST75 28.8217 28.7456 3 097 0.918 0.001 550 15
2019LST77 28.8238 28.7440 3 054 0.914 0.002 621 24
平均值 - - - 0.915 - 656 -
SE - - - 0.003 - 62 -
总计 平均值 - - - 0.921 - 543 -
SE - - - 0.002 - 32 -
表4 莱索托高地地下水、河水和水库水的 234U/238U
Table 4 The 234U/238U activity ratio of groundwater, river water and reservoir water in the Lesotho Highlands
样品来源 样品编号 纬度/°S 经度/°E 采样时间 234U/238U SE
地下水 2019LST47 29.3377 28.5050 2019/06 1.729 0.002
2019LST56 29.2322 28.5576 2019/06 1.625 0.001
2019LST58 29.2275 28.5373 2019/06 1.552 0.002
平均值 - - - 1.635 -
SE - - - 0.051 -
河水 2018LST03 28.7697 28.5067 2018/04 1.380 0.001
2018LST04 29.2906 28.9900 2018/04 1.504 0.001
2018LST05 29.2844 28.9672 2018/04 1.660 0.001
2018LST07 29.1067 28.8882 2018/04 1.473 0.001
2018LST09 29.1070 28.8606 2018/04 1.479 0.002
2018LST13 29.1695 28.8737 2018/04 1.564 0.001
2018LST15 29.3350 29.0350 2018/04 1.685 0.000
2018LST16 29.3733 29.0754 2018/04 1.558 0.000
2018LST18 29.4192 29.1169 2018/04 1.514 0.001
2018LST19 29.4672 29.1636 2018/04 1.476 0.001
2018LST20 29.4669 29.1649 2018/04 1.444 0.002
2018LST21 29.4655 29.1633 2018/04 1.430 0.003
2018LST27 29.5953 28.7117 2018/04 1.468 0.001
2018LST28 29.5950 28.7136 2018/04 1.756 0.001
2018LST30 29.5989 29.3086 2018/04 1.470 0.002
2018LST39 28.7381 28.6172 2018/04 1.487 0.005
2018LST41 28.7575 28.5470 2018/04 1.394 0.002
2018LST42 28.7537 28.5211 2018/04 1.404 0.001
2019LST02 28.7699 28.5075 2019/06 1.434 0.002
2019LST03 28.7694 28.5079 2019/06 1.383 0.001
2019LST04 29.2903 28.9900 2019/06 1.473 0.002
2019LST05 29.2829 28.9668 2019/06 1.532 0.001
2019LST07 29.2104 28.8892 2019/06 1.453 0.002
2019LST14 29.2284 28.9094 2019/06 1.443 0.002
2019LST27 29.5957 28.7119 2019/06 1.442 0.002
2019LST28 29.5953 28.7143 2019/06 1.778 0.010
2019LST37 28.8396 28.7544 2019/06 1.436 0.002
2019LST39 28.7336 28.6186 2019/06 1.452 0.004
2019LST40 28.7645 28.5836 2019/06 1.438 0.002
2019LST41 28.7626 28.5487 2019/06 1.412 0.002
2019LST46 29.5898 28.7135 2019/06 1.451 0.001
2019LST57 29.2301 28.5615 2019/06 1.416 0.002
2019LST59 29.0479 28.3126 2019/06 1.392 0.003
2019LST61 29.0202 28.5480 2019/06 1.442 0.002
2019LST63 29.0535 28.5152 2019/06 1.566 0.001
2019LST64 28.8258 28.7424 2019/06 1.404 0.002
平均值 - - - 1.486 -
SE - - - 0.016 -
水库水 2019LST43 28.4397 28.7135 2019/06 1.419 0.002
2019LST45 29.3446 28.5194 2019/06 1.424 0.002
2019LST60 29.0007 28.6904 2019/06 1.424 0.002
2018LST43 28.4394 28.3972 2018/04 1.417 0.001
2018LST26 29.3361 28.5014 2018/04 1.383 0.001
平均值 - - - 1.413 -
SE - - - 0.008 -
总计 平均值 - - - 1.488 -
SE - - - 0.015 -
表5 莱索托高地山坡土壤提取态的 234U/238U
Table 5 The 234U/ 238U activity ratio of the exchangeable fraction of the topsoil samples in the Lesotho Highlands
表6 研究区土壤、河水和基岩样品的平均元素含量
Table 6 Average elemental compositions of samples from soil, river water, and bedrock in the studied area
图6 莱索托高地土壤次生组分的停留时间
曲线展示了样品的 234U/ 238U值与停留时间的关系,阴影为标准偏差范围;柱状图反映了河水、土壤可交换态、水库水和地下水样品的 234U/ 238U分布情况;垂直灰色阴影表明 234U/ 238U的平均值±标准偏差
Fig.6 Residence time of the authigenic phases of soil in the Lesotho Highlands
The curve shows the dependence of residence time on the 234U/ 238U activity ratios of dissolved weathering product with shadow envelope indicating the standard deviation of T A. Histogram indicates distribution of the 234U/ 238U activity ratios of dissolved weathering product according to the river water, soil exchangeable fraction, reservoir water and groundwater. The vertical gray bar indicates average value ± standard deviation
图7 传统剥蚀模型与差异剥蚀模型对比
一致剥蚀对表层土中的碎屑组分和自生组分同步运输,差异剥蚀优先将次生黏土组分从整个风化层搬运到地表径流中
Fig.7 Model of bulk erosion and decoupled erosion
Bulk erosion removes the detrital and authigenic components in topsoil indifferently. Decoupled erosion preferential removes the water dispersible clay from the whole regolith column to surface runoff by seepage
1 Heimsath A M, Dietrich W E, Nishiizumi K, et al. The soil production function and landscape equilibrium[J]. Nature, 1997, 388(6 640): 358-361.
2 West A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814.
3 Perron J T. Climate and the Pace of Erosional Landscape Evolution, in Annual Review of Earth and Planetary Sciences[M]. Palo Alto: Annual Reviews, 2017: 561-591.
4 Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.
5 Hartmann J, Moosdorf N. Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—Implications for global scale analysis[J]. Chemical Geology, 2011, 287(3): 125-157.
6 Filippelli G M. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 391-425.
7 Li Gaojun. Modeling the late cenozoic marine phosphorus cycle[J]. Quaternary Science, 2010, 30(3):506-514.
李高军. 晚新生代海洋磷循环模拟[J]. 第四纪研究, 2010, 30(3): 506-514.
8 Li M Y H, Zhou M-F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong Deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3): 541-568.
9 Yang Ruiyu, Li Gaojun, Chen Jun. Carbon cycle restrained quantification of weathering depletion in making continental crust[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 155-161.
杨瑞钰, 李高军, 陈骏. 大陆地壳风化亏损的碳循环限定[J]. 地球科学与环境学报, 2018, 40(2): 155-161.
10 Li G, Elderfield H. Evolution of carbon cycle over the past 100 million years[J]. Geochimica et Cosmochimica Acta, 2013, 103: 11-25.
11 Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
12 Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9 776-97 82.
13 Riebe C, Kirchner J, Finkel R. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224: 547-562.
14 Ferrier K, Riebe C, Hahm W. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2 270-2 285.
15 Anderson S P, Dietrich W E, Brimhall G H. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment[J]. Geological Society of America Bulletin, 2002, 114(9): 1 143-1 158.
16 Riebe C S, Kirchner J W, Finkel R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4 411-4 427.
17 Kirchner J W, Finkel R C, Riebe C S, et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales[J]. Geology, 2001, 29(7): 591-594.
18 Bern C R,Yesavage T. Dual-phase mass balance modeling of small mineral particle losses from sedimentary rock-derived soils[J]. Chemical Geology, 2018, 476: 441-455.
19 Bern C R, Chadwick O A, Hartshorn A S, et al. A mass-balance model to separate and quantify colloidal and solute redistributions in soil[J]. Chemical Geology, 2011, 282(3): 113-119.
20 Aguirre A A, Derry L A, Mills T J, et al. Colloidal transport in the Gordon Gulch catchment of the Boulder Creek CZO and its effect on C-Q relationships for silicon[J]. Water Resources Research, 2017, 53(3): 2 368-2 383.
21 Kurtz A C, Derry L A, Chadwick O A, et al. Refractory element mobility in volcanic soils[J]. Geology, 2000, 28(8): 683-686.
22 Kim H, Gu X, Brantley S L. Particle fluxes in groundwater change subsurface shale rock chemistry over geologic time[J]. Earth and Planetary Science Letters, 2018, 500: 180-191.
23 Fu Yuanhe, Li Le, Chen Jun. Application of uranium isotope chronology for partical comminution in the eolian dust system[J]. Advances in Earth Science, 2018, 33(10): 1 034-1 047.
付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1 034-1 047.
24 Li Le,Li Laifeng,Li Gaojun. Soil production function at basin scale tested by uranium comminution age in the Tibetan[J]. Quaternary Science,2018, 38(1): 273-277.
李乐, 李来峰, 李高军. 青藏高原周缘流域尺度土壤产生方程的铀同位素破碎年龄学证据[J]. 第四纪研究, 2018, 38(1): 273-277.
25 Jourdan F, Féraud G, Bertrand H, et al. Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data[J]. Geology, 2005, 33(9): 745-748.
26 Fleming A, Summerfield M A, Stone J, et al. Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36Cl: Initial results[J]. Journal of The Geological Society, 1999, 156: 209-212.
27 Brown R W, Summerfield M A, Gleadow A J W. Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(12): 2 350.
28 Carroll D M, Bascomb C L. Notes on the Soils of Lesotho[M]. Tolworth, Surrey, England: Land Resources Division, Directorate of Overseas Surveys, 1967: 73.
29 Li L, Liu X, Li T, et al. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2017, 467: 64-71.
30 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
31 DePaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1): 394-410.
32 Cheng H, Lawrence Edwards R, Shen C-C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371: 82-91.
33 Chabaux F, Riotte J, Dequincey O. U-Th-Ra fractionation during weathering and river transport[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 533-576.
34 Li L, Chen J, Chen T, et al. Weathering dynamics reflected by the response of riverine uranium isotope disequilibrium to changes in denudation rate[J]. Earth and Planetary Science Letters, 2018, 500: 136-144.
35 Chen Y, Hedding D W, Li X, et al. Weathering dynamics of Large Igneous Provinces (LIPs): A case study from the Lesotho Highlands[J]. Earth and Planetary Science Letters, 2020, 530: 115 871.
36 Ma L, Chabaux F, Pelt E, et al. The effect of curvature on weathering rind formation: Evidence from Uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe[J]. Geochimica et Cosmochimica Acta, 2012, 80: 92-107.
37 Engelbrecht F, Marean C, Cowling R, et al. Downscaling Last Glacial Maximum climate over southern Africa[J]. Quaternary Science Reviews, 2019, 226: 105 879.
38 Li G, Hartmann J, Derry L A, et al. Temperature dependence of basalt weathering[J]. Earth and Planetary Science Letters, 2016, 443: 59-69.
39 Nugent M A, Brantley S L, Pantano C G, et al. The influence of natural mineral coatings on feldspar weathering[J]. Nature, 1998, 395(6 702): 588-591.
[1] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[12] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[13] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[14] 李永祥,鄢全树,赵西西,全体船上科学家. 剥蚀型汇聚板块边缘大地震成因机理研究:来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
[15] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
阅读次数
全文


摘要