Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (11): 1151-1158    DOI: 10.11867/j.issn.1001-8166.2016.11.1151
综述与评述     
有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响
赵彬1, 2, 姚鹏1*, *, 于志刚1, 3
1.中国海洋大学海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100;
2.中国海洋大学化学化工学院, 山东 青岛 266100;
3.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室, 山东 青岛 266237
The Effect of Organic Carbon-Iron Oxide Association on the Preservation of Sedimentary Organic Carbon in Marine Environments
Zhao Bin1, 2, Yao Peng1, *, Yu Zhigang1, 3
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,Qingdao 266100,China;
2.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
3.Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory forMarine Science and Technology, Qingdao 266237, China
 全文: PDF(2945 KB)   HTML
摘要: 有机碳在海洋环境中的长期保存机制一直是海洋碳循环研究的重点,也是研究气候变化与全球碳循环之间作用和反馈的关键。据估算,表层海洋沉积物中约20%的有机碳是通过与氧化铁的结合而保存下来的,因此与氧化铁结合是有机碳长期保存的关键因素之一。研究表明,有机碳—氧化铁复合物的形成主要通过吸附和共沉淀这2种机制,共沉淀反应是有机碳与氧化铁在海洋环境中结合的主导机制。不同来源的有机物在发生与铁氧化物的共沉淀或吸附作用时是有选择性的,在大部分海洋环境中铁氧化物优先与海洋有机碳结合,但在河口三角洲区域,铁氧化物优先与陆源有机碳结合。大量的陆源输入,较高的初级生产和频繁的再悬浮活动使河口边缘海特别适于开展有机碳—氧化铁结合的相关研究,这也是今后研究的重点方向。
关键词: 沉积有机碳保存碳循环氧化铁复合    
Abstract: Understanding the mechanisms responsible for long-term storage of organic carbon (OC) in marine environment is important for studying the marine carbon cycling and predicting how the global carbon cycle will respond to climate change. It is estimated that more than 20% of the OC in marine sediments is associated with iron oxides and thus these complexes are one of the most important factors in the long-term storage of OC. The OC-iron oxide (OC-Fe) association can be formed through either adsorption or co-precipitation, but the dominant mechanism of OC-Fe association in marine environments is co-precipitation. The combination of OC from different sources with iron oxides is selective. Iron oxides preferentially combine with marine OC in most marine environments, but in estuarine delta regions they prefer terrestrial OC. Due to large inputs of terrestrial materials, high primary production and frequent re-suspension, estuarine and marginal seas are suitable sites for OC-Fe association studies, which should be emphasized in the future.
Key words: Sedimentary organic carbon    Preservation    Iron oxide    Carbon cycling.    Complexation
收稿日期: 2016-08-10 出版日期: 2016-11-20
:  P734  
基金资助: 国家自然科学基金重点国际(地区)合作研究项目“长江口及邻近海域沉积有机碳的保存机制研究”(编号:41620104001); 国家自然科学基金面上项目“长江口—东海内陆架沉积有机碳的再矿化作用研究”(编号:41676063)资助
通讯作者: 姚鹏(1977-),男,山东菏泽人,教授,主要从事海洋有机生物地球化学研究.E-mail:yaopeng@ouc.edu.cn   
作者简介: 赵彬(1988-),男,山东青岛人,博士研究生,主要从事海洋有机生物地球化学研究.E-mail:zhaobin1988@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚鹏
赵彬
于志刚

引用本文:

赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.

Zhao Bin, Yao Peng, Yu Zhigang. The Effect of Organic Carbon-Iron Oxide Association on the Preservation of Sedimentary Organic Carbon in Marine Environments. Advances in Earth Science, 2016, 31(11): 1151-1158.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.11.1151        http://www.adearth.ac.cn/CN/Y2016/V31/I11/1151

[1] Khatiwala S,Primeau F,Hall T.Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean[J]. Nature ,2009, 462(7 271):346-349.
[2] Siegenthaler U,Sarmiento J L,Siegenthaler U, et al. Atmospheric carbon dioxide and the ocean[J]. Nature ,1993, 365(6 442):119-125.
[3] Sabine C L,Feely R A,Gruber N, et al . The oceanic sink for anthropogenic CO 2 [J]. Science , 2004, 305(5 682):367-371.
[4] Bianchi T S,Schreiner K M,Smith R W, et al .Redox effects on organic matter storage in coastal sediments during the Holocene: A biomarker/proxy perspective[J]. Annual Review of Earth and Planetary Sciences ,2016,44(1):295-319.
[5] Yu Zhigang, Yao Peng, Zhen Yu, et al .Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area[J]. Acta Oceanologica Sinica ,2011,33(5):1-8.
.海洋学报,2011,33(5):1-8.]
[6] Liu Jun,Yu Zhigang,Zang Jiaye, et al .Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science , 2015,30(5):564-578.
.地球科学进展,2015,30(5):564-578.]
[7] Huang Bangqin,Liu Xin.Review on planktonic ecosystem and its control on biological pump in the marginal seas[J]. Advances in Earth Science ,2015,30(3):385-395.
. 地球科学进展,2015,30(3):385-395.]
[8] Hedges J I,Keil R G.Sedimentary organic matter preservation:An assessment and speculative synthesis[J]. Marine Chemistry ,1995, 49(2/3):81-115.
[9] Torn M S,Trumbore S E,Chadwick O A, et al .Mineral control of soil organic carbon storage and turnover[J]. Nature ,1997, 389(6 647):170-173.
[10] Kaiser K,Guggenberger G.Mineral surfaces and soil organic matter[J]. European Journal of Soil Science ,2003,54(2):219-236.
[11] Pronk G J,Heister K,Kögelknabner I. Iron oxides as major available interface component in loamy arable topsoils[J]. Soil Science Society of America Journal ,2011,75(6):2 158-2 168.
[12] Doetterl S,Berhe A A,Nadeu E, et al .Erosion,deposition and soil carbon:A review of process-level controls,experimental tools and models to address C cycling in dynamic landscapes[J]. Earth-Science Reviews ,2016,154:102-122,doi:10.1016/j.earscirev.2015.12.005.
[13] Lu Longfei,Cai Jingong,Bao Yujin, et al .Summary of processes and significance of clay minerals in marine sedimentary organic matter preservation and in global carbon cycle[J]. Advances in Earth Science ,2006,21(9):931-937.
.地球科学进展,2006,21(9): 931-937.]
[14] Lalonde K,Mucci A,Ouellet A, et al .Preservation of organic matter in sediments promoted by iron[J]. Nature ,2012,483(7 388):198-200.
[15] Eglinton T I. A rusty carbon sink[J]. Nature ,2012,483(7 388):165-166.
[16] Mehra O P,Jackson M L.Iron oxide removal from soils and clays by adithionitecitrate system buffered with sodium bicarbonate[J]. Clays Clay Minerals ,1958,7(1):317-327.
[17] Salvadó J A,Tesi T,Andersson A, et al .Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters ,2015,42(19):8 122-8 130.
[18] Shields M R,Bianchi T S,Gélinas Y, et al .Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters ,2016,43(3):1 149-1 157.
[19] Mikutta R,Lorenz D,Guggenberger G, et al .Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus, adsorption:Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta ,2014,144:258-276,doi:10.1016/j.gca.2014.08.026.
[20] Chen C,Dynes J J,Wang J, et al .Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology ,2014,48(23):13 751-13 759.
[21] Berner R A.Sedimentary pyrite formation [J]. American Journal of Science ,1970,268(1):1-23.
[22] Boudot J P,HadjBrahim A B,Steiman R, et al .Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios[J]. Soil Biology and Biochemistry ,1989,21(7):961-966.
[23] Jones D L,Edwards A C.Influence of sorption on the biological utilization of two simple carbon substrates[J]. Soil Biology and Biochemistry ,1998,30(14):1 895-1 902.
[24] Tipping E.The adsorption of aquatic humic substances by iron-oxides[J]. Geochimica et Cosmochimica Acta ,1981,45(2):191-199.
[25] Gu B H,Schmitt J,Chen Z H, et al .Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J]. Environmental Science and Technology ,1995,28(1): 38-46.
[26] Lv J,Zhang S,Wang S, et al .Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides[J]. Environmental Science and Technology ,2016,50(5):2 328-2 336.
[27] Kleber M,Mikutta R,Torn M S, et al .Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science ,2005,56(6):717-725.
[28] Van Der Zee C, Roberts D R, Rancourt D G, et al . Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments[J]. Geology , 2003, 31(11): 993-996.
[29] Eusterhues K,Rennert T,Knicker H, et al .Fractionation of organic matter due to reaction with Ferrihydrite:Coprecipitation versus adsorption[J]. Environmental Science and Technology ,2011,45(2):527-533.
[30] Wagai R,Mayer L M.Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta ,2007,71(1):25-35.
[31] Eusterhues K,Neidhardt J,Hädrich A, et al .Biodegradation of ferrihydrite-associated organic matter[J]. Biogeochemistry ,2014, 119(1/3):45-50.
[32] Riedel T,Zak D,Biester H, et al .Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America , 2013,110(25):10 101-10 105.
[33] Arnarson T S,Keil R G.Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times[J]. Geochimica et Cosmochimica Acta ,2007,71(14):3 545-
3 556.
[34] Kaiser K,Guggenberger G.The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry ,2000,31(7/8):711-725.
[35] Adhikari D,Yang Y.Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports ,2015,5(11 214):1-7.
[36] Kramer M G,Sanderman J,Chadwick O A, et al .Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil[J]. Global Change Biology ,2012,18(8):2 594-2 605.
[37] Yao Peng,Guo Zhigang,Yu Zhigang. Research process in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Acta Oceanologica Sinica ,2014,36(2):23-32
.海洋学报,2014,36(2):23-32.]
[38] Yao P,Zhao B,Bianchi T S, et al .Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research , 2014, 91:1-11,doi:10.1016/j.csr.2014.08.010.
[39] Guo Zhigang,Yang Zuosheng,Fan Dejiang, et al . Seasonal sedimentary effect on the Changjiang Estuary Mud area[J]. Acta Geographica Sinica ,2003,58(4):591-597.
.地理学报,2003,58(4):591-597.]
[1] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[2] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[3] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[4] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[5] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋*[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[6] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[7] 陈中笑,赵琦. 全球碳循环研究中的δ13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[8] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
[9] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[10] 王建平,翟裕生,刘家军,柳振江,刘 俊. 矿床变化与保存研究的裂变径迹新途径[J]. 地球科学进展, 2008, 23(4): 421-427.
[11] 翦知湣,金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3): 221-227.
[12] 赵转军,南忠仁,王胜利,刘晓文,陶燕. 干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析[J]. 地球科学进展, 2008, 23(11): 1193-1200.
[13] 陈庆强,孟翊,周菊珍,顾靖华,胡克林. 长江口盐沼滩面发育对有机碳深度分布的制约[J]. 地球科学进展, 2007, 22(1): 26-32.
[14] 卢龙飞,蔡进功,包于进,李从先,杨守业,范代读. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J]. 地球科学进展, 2006, 21(9): 931-937.
[15] 于贵瑞;王绍强;陈泮勤;李庆康. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.