地球科学进展 ›› 2015, Vol. 30 ›› Issue (9): 1006 -1017. doi: 10.11867/j.issn.1001-8166.2015.09.1006

上一篇    下一篇

稻田土壤碳循环关键微生物过程的计量学调控机制探讨
吴金水( ), 葛体达, 祝贞科   
  1. 中国科学院亚热带农业生态研究所,亚热带农业生态过程重点实验室,湖南 长沙,410125
  • 收稿日期:2015-06-11 修回日期:2015-08-12 出版日期:2015-09-20
  • 基金资助:
    国家自然科学基金重点项目“亚热带典型水稻土碳循环关键微生物过程的计量学特征”(编号:41430860);国家自然科学基金面上项目“农田土壤自养微生物CO2 同化功能及其同化碳转化机理研究”(编号:41271279)资助

Discussion on the Key Microbial Process of Carbon Cycle and Stoichiometric Regulation Mechanisms in Paddy Soils

Jinshui Wu( ), Tida Ge, Zhenke Zhu   

  1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
  • Received:2015-06-11 Revised:2015-08-12 Online:2015-09-20 Published:2015-09-20

稻田生态系统碳循环是我国陆地生态系统碳循环的重要组成部分,微生物驱动的稻田土壤碳循环(输入、分配、稳定等过程)的生物地球化学过程是土壤碳循环过程研究的核心。目前,对稻田土壤碳循环过程及其机制的认识缺乏基于生态化学计量学层面的研究。因此,系统解析耦合化学—生物—环境要素的稻田土壤碳循环的关键过程是深入研究当前面临的诸多土壤生物化学问题(如土壤碳循环与土壤肥力、温室气体减排等)的科学瓶颈。在综合分析计量学的基本内涵与土壤计量学发展需求的基础上,论述了稻田土壤有明显区别于其他土壤类型的土壤发生学和生物化学特点,重点评述了稻田土壤碳循环的3个主要过程的研究进展,包括:①稻田土壤新鲜有机质转化、矿化的关键微生物过程计量;②典型水稻土CH4产生的关键微生物过程计量;③典型水稻土微生物CO2光合同化功能的计量。在此基础上,探讨了土壤生物化学过程统计学和数学模型在土壤计量学研究中的应用,并提出了稻田土壤碳循环关键微生物过程的计量学特征研究的发展趋势和科学问题展望。期望能够通过这些探讨对推动我国该研究领域的基础理论建设和新技术发展有所贡献。

The paddy field ecosystem carbon cycle is a significant part of the terrestrial ecosystem carbon cycle in China. The organic carbon cycle in paddy soil (including processes such as input, allocation, and stabilization) is driven by biochemical processes that are dominated by microbes, and is the core of soil carbon cycle research. Current studies on paddy soil carbon cycle processes and their mechanisms lack metrology-level research based on the basic theories of chemistry, biology, and ecology. Therefore, systematic and quantitative analysis of the key processes in the paddy soil carbon cycle, which includes chemical-biological-environmental elements, deal with the bottleneck for the comprehensive evaluation of the carbon-sink-adding/emission-reduction effects of paddy fields, as well as the in-depth study of the current problems of soil biochemistry (such as the soil carbon cycle and soil fertility and greenhouse gas emissions). Based on a comprehensive analysis of the basic connotation of metrology and the development demands of soil metrology. This paper describes how paddy soil has an obvious discriminative soil genesis and biochemical characteristics that differ from other soil types. The paper mainly focuses on three processes of the paddy soil carbon cycle: (①measurements of key microbial processes involved in fresh organic matter transformation and mineralization in paddy soil, ②measurements of key microbial processes involved in CH4 generation in typical paddy soil, and ③measurements of microbial CO2 photosynthesis and assimilation functions in typical paddy soil. Based on these measurements, we discuss the application of statistical and mathematical models of soil biochemical processes to soil metrology research and put forward the metrological development trend and the prospects of scientific issues in the research on the metrological characteristics of key microbial biological processes in the paddy soil carbon cycle. It is hoped that these discussions will promote the construction of basic theories in the research field and contribute to the development of new technologies in China.

中图分类号: 

图1 生态化学计量学的基本理论结构 [ 4 , 5 ]
Fig. 1 Basic theory constituents of ecological stoichiometry [ 4 , 5 ]
图2 环境条件和元素计量学对微生物群落结构的影响 [ 6 ] TER:元素阈值比率;CNR:营养级驱动的元素循环;GRH:生长速率假说;CUE:碳利用效率;NUE:氮利用效率;PUE:磷利用效率
Fig. 2 Proposed effects of resource stoichiometry and environment on microbial community structure and function [ 6 ] TER:Threshold Element Ratio; CNR:Consumer driven Nutrient Recycling; GRH:Growth Rate Hypothesis; CUE:C Use Efficiency; NUE:N Use Efficiency; PUE:P Use Efficiency
[1] He Jizheng.Frontiers in Soil Biology[M]. Beijing: Science Press, 2014.
[贺纪正. 土壤生物学前沿[M]. 北京: 科学出版社, 2014.]
[2] Sterner R W, Elser J J.Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.
[3] Zeng Dehui, Chen Guangsheng.Ecological stoichiometry: A science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica,2005, 29(6): 1 007-1 019.
[曾德慧,陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报 2005, 29(6): 1 007-1 019.]
[4] Sterner R W, Elser J J.Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.
[5] Manzoni S, Trofymow J A, Jackson R B, et al.Stoichiometric controls dynamics on carbon, nitrogen, and phosphorus in decomposing litter[J]. Ecological Monographs,2010,80(1): 89-106.
[6] Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al.The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J].Ecological Monographs,2015, 85(2): 133-155.
[7] Sardans J, Rivas-Ubach A, Peñuelas J.The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives[J]. Biogeochemistry, 2011, doi: 10.1007/s10533-011-9640-9.
[8] Sistla S A, Schimel J P.Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68-78.
[9] Li Qingkui.Paddy Soils of China[M]. Beijing: Science Press, 1992.
[李庆逵. 中国水稻土[M]. 北京: 科学出版社, 1992.]
[10] Yu Tianren.Physical Chemistry of Paddy Soils[M]. Beijing: Science Press, 1983.
[于天仁. 水稻土的物理化学[M]. 北京: 科学出版社, 1983.]
[11] Kögel-Knabner I, Amelung W, Cao Z, et al.Biogeochemistry of paddy soils[J]. Geoderma,2010, 157: 1-14.
[12] Sardans J, Rivas-Ubach A, Peñuelas J.The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives[J]. Biogeochemistry,2012, 111(1/3): 1-39.
[13] Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history, and N:P stoichiometry[J].BioScience,1996, 46(9): 674-684.
[14] Gans J, Wolinsky M, Dunbar J.Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309: 1 387-1 390.
[15] Harris J.Soil Microbial communities and restoration ecology: Facilitators or followers?[J]. Science,2009, 325(31): 573-574.
[16] Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature,2009, 462(7 274): 795-798.
[17] Wang Shaoqiang, Yu Guirui.Ecological stoichiometry characteristic of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica,2008, 28(8): 3 937-3 947.
[王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3 937-3 947.]
[18] He Jinsheng, Han Xingguo.Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6.
[贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.]
[19] Li Y, Wu J, Liu S, et al. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J].Global Biogeochemical Cycles,2012, 26:GB4002, doi: 10.1029/2012GB004399.
[20] Shi Zhou, Lark R M.A new branch of soil science—Pedometrics, its orgin and decelopment[J]. Acta Pedologica Sinca,2007, 44(5):919-924.
[史舟, Lark R M.土壤学的新分支——计量土壤学(Pedometrics)的形成与发展[J]. 土壤学报, 2007, 44(5): 919-924.]
[21] Wu J.Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62: 29-34.
[22] Ge T D, Wu X H, Chen X J, et al.Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013, 113: 70-78.
[23] Ge T D, Liu C, Yuan H Z, et al.Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant and Soil, 2015, 392: 17-25.
[24] Pan G, Li L, Wu L, et al.Storage and sequestration potential of topsoil organic carbon in China’s paddy soils[J]. Global Change Biology, 2004, 10(1): 79-92.
[25] Lal R.Offsetting China’s CO2 emissions by soil carbon sequestration[J]. Climatic Change,2004, 65: 263-275.
[26] Wu J S, Zhou P, Su Y R, et al.Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 031-1 037.
[27] Zhou P, Li Y, Ren X E, et al.Organic carbon mineralization responses to temperature increases in subtropical paddy soils[J]. Journal of Soils and Sediments, 2014, 14: 1-9.
[28] Ding W, Cai Z, Wang D.Preliminary budget of methane emissions from natural wetlands in China[J]. Atmospheric Environment, 2004, 38(5): 751-759.
[29] Wang Ping, Huang Yao, Zhang Wen.Estimates of methane emission from rice paddies in China over the period 1955-2005[J]. Advances in Climate Change Research,2009, 5(5): 291-297.
[王平, 黄耀, 张稳. 1955—2005年中国稻田甲烷排放估算[J]. 气候变化研究进展, 2009, 5(5): 291-297.]
[30] Zheng Jufeng,Pan Genxing, Cheng Kun,et al.A discussion on quantification of greenhouse gas emissions from wetlands based on“2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands”[J]. Advances in Earth Science,2014, 29(10): 1 120-1 125.
[郑聚锋, 潘根兴, 程琨,等. 从《IPCC 2006国家温室气体排放清单增补: 2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10):1 120-1 125.]
[31] Jenkinson D S.Studies on decomposition of plant material in soil. 2. Partial sterilization of soil and soil biomass[J]. Journal of Soil Science,1966, 17: 280-302.
[32] Schimel J P, Weintraub M.The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model[J]. Soil Biology and Biochemistry, 2003, 35: 549-563.
[33] Ise T, Moorcroft P R.The global-scale temperature and moisture dependencies of soil organic carbon decomposition: An analysis using a mechanistic decomposition model[J]. Biogeochemistry, 2006, 80: 217-231.
[34] Hopkins D W, Gregorich E G.Carbon as a substrate for soil organisms[M]∥Bardgett R D, Usher M B, Hopkins D W,eds.Biological Diversity and Function in Soils. Cambridge: Cambridge University Press, 2005.
[35] Bastian F, Bouziri L, Nicolardot B, et al.Impact of wheat straw decomposition on successional patterns of soil microbial community structure[J].Soil Biology and Biochemistry, 2009, 41: 262-275.
[36] Blagodatskaya E, Khomyakov N, Myachina O, et al.Microbial interactions affect sources of priming induced by cellulose[J]. Soil Biology and Biochemistry, 2014, 74: 39-49.
[37] Stursova M, Sinsabaugh R L.Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation[J]. Soil Biology and Biochemistry, 2008, 40: 550-553.
[38] Lorenz K, Preston C M, Raspe S, et al.Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C-CPMAS-NMR[J].Soil Biology and Biochemistry,2000, 32: 779-792.
[39] Allison S D, Vitousek P M.Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J]. Biotropica,2004, 36: 285-296.
[40] Sinsabaugh R L, Lauber C L, Weintraub M N, et al.Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008, 11: 1 252-1 264.
[41] Kellner H, Luis P, Schlitt B, et al.Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil[J].Soil Biology and Biochemistry,2009, 41: 1 380-1 389.
[42] Theuerl S, Dörr N, Guggenberger G, et al.Response of recalcitrant soil substances to reduced N deposition in a spruce forest soil: Integrating laccas-encoding genes and lignin decomposition[J].FEMS Microbiology Ecology,2010, 73: 166-177.
[43] Sinsabaugh R L.Phenol oxidase, peroxidase and organic matter dynamics of soil[J].Soil Biology and Biochemistry, 2010, 42: 391-404.
[44] Henriksen T, Breland T.Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry,1999, 31: 1 121-1 134.
[45] Cookson W R, Abaye D A, Marschner P, et al.The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure[J].Soil Biology and Biochemistry,2005, 37: 1 726-1 737.
[46] Huang Y, Sass R L, Fisher F M.A semi-empirical model of methane emission from flooded rice paddy soils[J]. Global Change Biology,1998, 4: 247-268.
[47] Watanabe A, Katoh K, Kimura M.Effect of rice straw application on CH4 emission from paddy fields[J].Soil Science and Plant Nutrition,1993, 39: 707-712.
[48] Watanabe A, Satoh Y, Kimura M.Estimation of the increase in CH4 emission from paddy soils by rice straw application[J]. Plant and Soil,1995, 173: 225-231.
[49] Lu Y H, Wassmann R, Neue H U, et al.Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil[J]. Soil Science Society of America Journal,2000, 64: 2 011-2 017.
[50] Watanabe T, Hosen Y, Agbisit R, et al.Changes in community structure of methanogenic archaea brought about by water-saving practice in paddy field soil[J]. Soil Biology & Biochemistry,2013, 58: 235-243.
[51] Ma K, Qiu Q F, Lu Y H.Microbial mechanism for rice variety control on methane emission fromrice field soil[J]. Global Change Biology, 2010, 16: 3 085-3 095.
[52] Ma K, Lu Y H.Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75: 446-456.
[53] Zou Jianwen, Huang Yao, Zong Lianggang,et al.A field study on CO2, CH4 and N2O emissions from rice paddy and impact factors[J]. Acta Scientiae Circumstantie, 2003, 23(6): 758-764.
[邹建文, 黄耀, 宗良纲, 等. 稻田CO2, CH4和N2O排放及其影响因素[J]. 环境科学学报, 2003, 23(6): 758-764.]
[54] Khalil M A, Rasmussen R A, Shearer M J, et al.Factors affecting methane emissions from rice fields[J]. Journal of Geophysical Research—Atmospheres,1998, 19: 25 219-25 231.
[55] Yang S S, Chang H L.Effect of environmental conditions on methane production and emission from paddy soil[J]. Agriculture, Ecosystems and Environment,1998, 69: 69-80.
[56] Ding Weixin, Cai Zucong.Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands[J]. Acta Ecologica Sinica,2002, 22(10): 1 672-1 679.
[丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1 672-1 679.]
[57] Ding Weixin, Cai Zucong.Methane emission from mires and its influencing factors[J].Scientia Geographica Sinica, 2002, 22(5): 619-625.
[丁维新, 蔡祖聪. 沼泽甲烷排放及其主要影响因素[J]. 地理科学, 2002, 22(5): 619-625.]
[58] Yu K W, Wang Z P, Vermoesen A, et al.Nitrous oxide and methane emissions from different soil suspensions: Effect of soil redox status[J].Biology and Fertility of Soils, 2001, 34: 25-30.
[59] Mer J L, Roger P.Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37: 25-50.
[60] Yan X, Yagi K, Akiyama H, et al.Statistical analysis of the major variables controlling methane emission from rice fields[J].Global Change Biology,2005, 11(7): 1 131-1 141.
[61] Khalil M, Boeckx P, Rosenani A, et al.Nitrogen transformations and emission of greenhouse gases from three acid soils of humid tropics amended with N sources and moisture regime. II. Nitrous oxide and methane fluxes[J].Communications in Soil Science and Plant Analysis,2001, 32: 2 909-2 924.
[62] Guo Dayong, Fan Mingsheng, Zhang Fusuo.A review on biochar application in arable soils[J]. Plant Nutrition and Fertilizer Science,2012, 18(5): 1 252-1 261.
[郭大勇, 范明生, 张福锁. 农田土壤黑碳应用研究进展[J]. 植物营养与肥料学报, 2012, 18(5): 1 252-1 261.]
[63] Friedlingstein P, Cox P, Betts R, et al.Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison[J]. Journal of Climate,2006, 19: 3 337-3353.
[64] Huang Yao, Zhang Wen, Zheng Xunhua, et al.Estimates of methane emission from Chinese rice paddies by linking a model to GIS database[J]. Acta Ecologica Sinica, 2006, 26(4): 980-988.
[黄耀, 张稳, 郑循华, 等. 基于模型和GIS技术的中国稻田甲烷排放估计[J]. 生态学报, 2006, 26(4): 980-988.]
[65] Zheng X, Wang M, Wang Y, et al.Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields[J]. Advances in Atmospheric Sciences,1998,15: 569-579.
[66] Yuan H Z, Ge T D, Chen C Y, et al.Microbial autotrophy plays a significant role in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012,78: 2 328-2 336.
[67] Wu X H, Ge T D, Wang W, et al.Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil[J].Frontiers in Microbiology,2015, 6:379, doi: 10.3389/fmicb.2015.00379.
[68] Yuan H Z, Ge T D, Wu X H, et al.Long-term field fertilization alters the div ersity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology,2012,95:1 061-1 071.
[69] Hart K M, Kulakova A N, Allen C C R, et al. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter[J].Environmental Science & Technology,2013, 47: 5 218-5 317.
[70] Wu X H, Ge T D, Yuan H Z, et al.Changes in bacteria CO2 fixation with depth in agricultural soils[J]. Applied Microbiology and Biotechnology,2014, 98: 2 309-2 319.
[71] Chen Xiaojuan, Wu Xiaohong, Jian Yan, et al.Carbon dioxide assimilation potential,functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J].Environment Science,2014, 35(3): 354-360.
[陈晓娟, 吴小红, 简燕, 等. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 2014, 35(3): 354-360.]
[72] Yuan H Z, Ge T D, Chen X B, et al.Abundance and diversity of CO2-assimilating bacteria and algae within red agricultural soils are modulated by changing management practice[J].Microbial Ecology,2015, doi: 10.1007/s00248-015-0621-8.
[73] Haynes R J.Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J].Soil Biology and Biochemistry,2000,(32):211-219.
[74] Boddy E, Hill P W, Farrar J, et al.Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils[J].Soil Biology and Biochemistry,2007,(39):827-835.
[75] Kalbitz K, Schmerwitz J, Schwesig D.et al.Biodegradation of soil-derived dissolved organic matter as related to its properties[J].Geoderma,2003,(113):273-291.
[76] Alberti G, Vicca S, Inglima I, et al.Soil C-N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests[J].iForest-Biogeosciences and Forestry,2015,(8):195-206.
[77] Weintraub M N, Schimel J P.Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils[J].Ecosystems,2003,(6):129-143.
[78] Fisk M, Santangelo S, Minick K.Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J].Soil Biology and Biochemistry, 2015,(81):212-218.
[79] Dharmakeerthi R S, Hanley K, Whitman T, et al.Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years[J].Soil Biology and Biochemistry, 2015,(88):268-274.
[80] Wang Q, Wang S, He T, et al.Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils[J].Soil Biology and Biochemistry, 2014,(71):13-20.
[81] Conde E, Cardenas M, Ponce-Mendoza A, et al.The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil[J].Soil Biology and Biochemistry, 2005,(37):681-691.
[82] Dimassi B, Mary B, Fontaine S, et al.Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization[J].Soil Biology and Biochemistry, 2014,(78):332-339.
[83] Nelson P N, Dictor M C, Soulas G.Availability of organic carbon in soluble and particle-size fractions from a soil profile[J].Soil Biology and Biochemistry,1994,(26):1 549-1 555.
[84] Keller J K, Bridgham S D, Chapin C T, et al.Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen[J].Soil Biology and Biochemistry,2005,(37):1 197-1 204.
[85] Fisk M, Santangelo S, Minick K.Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J].Soil Biology and Biochemistry,2015,(81):212-218.
[86] Liu D Y, Song C C.Effects of phosphorus enrichment on mineralization of organic carbon and contents of dissolved carbon in a freshwater marsh soil[J].China Environmental Science,2008,(28):769-774.
[87] Kirkby C A, Richardson A E, Wade L J, et al.Carbon-nutrient stoichiometry to increase soil carbon sequestration[J].Soil Biology and Biochemistry,2013,(60):77-86.
[88] Creamer C A, Jones D L, Baldock J A, et al.Stoichiometric controls upon low molecular weight carbon decomposition[J].Soil Biology and Biochemistry,2014,(79): 50-56.
[89] Ross D J, Speir T W, Kettles H A, et al.Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: Influence of season and slow-release P and S fertilizer[J].Soil Biology and Biochemistry,1995,(27):1 431-1 443.
[90] Sinsabaugh R L, Manzoni S, Moorhead D L, et al.Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling[J].Ecology Letters, 2013,(16): 930-939.
[91] Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012,(43):313-343.
[92] Mooshammer M, Wanek W, Schnecker J, et al.Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J].Ecology, 2011,(93):770-782.
[93] McBratney A B, Mendonca M L, Minasny B. On digital soil mapping[J].Geoderma,2003,117: 3-52.
[94] Grunwald S, Thompsonb J A, Boettinger J L.Digital soil mapping and modeling at continental scales: Finding solutions for global issues[J].Soil Science Society of America Journal,2011, 75(4): 1 201-1 213.
[95] Taylor J A, Brasseur G P, Zimmerman P R.A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model[J].Journal of Geophysical Research,1991, 96: 3 013-3 044.
[96] Elser J J, Fangan W F, Dcnno R F, et al.Nutritional constraints in terrestrial and freshwater food webs[J]. Nature,2000, 408(6 812): 578-580.
[97] Chow A T,Tanji K K,Gao S D,et al.Temperature,water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J].Soil Biology and Biochemistry,2006,38(3): 477-488.
[98] Guo Jiawei, Zou Yuanchun, Huo Lili, et al.DNDC model, a model of biogeochemical processes: Research progress and applications[J].Chinese Journal of Applied Ecology,2013,24(2): 571-580.
[郭佳伟,邹元春,霍莉莉,等.生物地球化学过程模型DNDC的研究进展及其应用[J].应用生态学报,2013,24(2): 571-580.]
[99] Chen Haixin, Sun Benhua, Feng Hao, et al.Simulation of soil carbon contents and crop yields in long-term fertilized cropland in Guanzhong area using DNDC model[J]. Journal of Agro-Environment Science,2014,33(9): 1 782-1 790.
[陈海心,孙本华,冯浩,等.应用DNDC 模型模拟关中地区农田长期施肥条件下土壤碳含量及作物产量[J].农业环境科学学报,2014,33(9):1 782-1 790.]
[100] Harris P, Fotheringham A S, Crespo P, et al.The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets[J]. Mathematical Geosciences, 2010, 42(6): 657-680.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[12] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[13] 苏 强. 生长速率假说及其在浮游动物营养动力学中的研究进展[J]. 地球科学进展, 2012, 27(11): 1204-1210.
[14] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[15] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
阅读次数
全文


摘要