[1] |
He Jizheng.Frontiers in Soil Biology[M]. Beijing: Science Press, 2014.
|
|
[贺纪正. 土壤生物学前沿[M]. 北京: 科学出版社, 2014.]
|
[2] |
Sterner R W, Elser J J.Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.
|
[3] |
Zeng Dehui, Chen Guangsheng.Ecological stoichiometry: A science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica,2005, 29(6): 1 007-1 019.
|
|
[曾德慧,陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报 2005, 29(6): 1 007-1 019.]
|
[4] |
Sterner R W, Elser J J.Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.
|
[5] |
Manzoni S, Trofymow J A, Jackson R B, et al.Stoichiometric controls dynamics on carbon, nitrogen, and phosphorus in decomposing litter[J]. Ecological Monographs,2010,80(1): 89-106.
|
[6] |
Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al.The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J].Ecological Monographs,2015, 85(2): 133-155.
|
[7] |
Sardans J, Rivas-Ubach A, Peñuelas J.The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives[J]. Biogeochemistry, 2011, doi: 10.1007/s10533-011-9640-9.
|
[8] |
Sistla S A, Schimel J P.Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68-78.
|
[9] |
Li Qingkui.Paddy Soils of China[M]. Beijing: Science Press, 1992.
|
|
[李庆逵. 中国水稻土[M]. 北京: 科学出版社, 1992.]
|
[10] |
Yu Tianren.Physical Chemistry of Paddy Soils[M]. Beijing: Science Press, 1983.
|
|
[于天仁. 水稻土的物理化学[M]. 北京: 科学出版社, 1983.]
|
[11] |
Kögel-Knabner I, Amelung W, Cao Z, et al.Biogeochemistry of paddy soils[J]. Geoderma,2010, 157: 1-14.
|
[12] |
Sardans J, Rivas-Ubach A, Peñuelas J.The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives[J]. Biogeochemistry,2012, 111(1/3): 1-39.
|
[13] |
Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history, and N:P stoichiometry[J].BioScience,1996, 46(9): 674-684.
|
[14] |
Gans J, Wolinsky M, Dunbar J.Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309: 1 387-1 390.
|
[15] |
Harris J.Soil Microbial communities and restoration ecology: Facilitators or followers?[J]. Science,2009, 325(31): 573-574.
|
[16] |
Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature,2009, 462(7 274): 795-798.
|
[17] |
Wang Shaoqiang, Yu Guirui.Ecological stoichiometry characteristic of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica,2008, 28(8): 3 937-3 947.
|
|
[王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3 937-3 947.]
|
[18] |
He Jinsheng, Han Xingguo.Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6.
|
|
[贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.]
|
[19] |
Li Y, Wu J, Liu S, et al. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J].Global Biogeochemical Cycles,2012, 26:GB4002, doi: 10.1029/2012GB004399.
|
[20] |
Shi Zhou, Lark R M.A new branch of soil science—Pedometrics, its orgin and decelopment[J]. Acta Pedologica Sinca,2007, 44(5):919-924.
|
|
[史舟, Lark R M.土壤学的新分支——计量土壤学(Pedometrics)的形成与发展[J]. 土壤学报, 2007, 44(5): 919-924.]
|
[21] |
Wu J.Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62: 29-34.
|
[22] |
Ge T D, Wu X H, Chen X J, et al.Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013, 113: 70-78.
|
[23] |
Ge T D, Liu C, Yuan H Z, et al.Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant and Soil, 2015, 392: 17-25.
|
[24] |
Pan G, Li L, Wu L, et al.Storage and sequestration potential of topsoil organic carbon in China’s paddy soils[J]. Global Change Biology, 2004, 10(1): 79-92.
|
[25] |
Lal R.Offsetting China’s CO2 emissions by soil carbon sequestration[J]. Climatic Change,2004, 65: 263-275.
|
[26] |
Wu J S, Zhou P, Su Y R, et al.Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 031-1 037.
|
[27] |
Zhou P, Li Y, Ren X E, et al.Organic carbon mineralization responses to temperature increases in subtropical paddy soils[J]. Journal of Soils and Sediments, 2014, 14: 1-9.
|
[28] |
Ding W, Cai Z, Wang D.Preliminary budget of methane emissions from natural wetlands in China[J]. Atmospheric Environment, 2004, 38(5): 751-759.
|
[29] |
Wang Ping, Huang Yao, Zhang Wen.Estimates of methane emission from rice paddies in China over the period 1955-2005[J]. Advances in Climate Change Research,2009, 5(5): 291-297.
|
|
[王平, 黄耀, 张稳. 1955—2005年中国稻田甲烷排放估算[J]. 气候变化研究进展, 2009, 5(5): 291-297.]
|
[30] |
Zheng Jufeng,Pan Genxing, Cheng Kun,et al.A discussion on quantification of greenhouse gas emissions from wetlands based on“2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands”[J]. Advances in Earth Science,2014, 29(10): 1 120-1 125.
|
|
[郑聚锋, 潘根兴, 程琨,等. 从《IPCC 2006国家温室气体排放清单增补: 2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10):1 120-1 125.]
|
[31] |
Jenkinson D S.Studies on decomposition of plant material in soil. 2. Partial sterilization of soil and soil biomass[J]. Journal of Soil Science,1966, 17: 280-302.
|
[32] |
Schimel J P, Weintraub M.The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model[J]. Soil Biology and Biochemistry, 2003, 35: 549-563.
|
[33] |
Ise T, Moorcroft P R.The global-scale temperature and moisture dependencies of soil organic carbon decomposition: An analysis using a mechanistic decomposition model[J]. Biogeochemistry, 2006, 80: 217-231.
|
[34] |
Hopkins D W, Gregorich E G.Carbon as a substrate for soil organisms[M]∥Bardgett R D, Usher M B, Hopkins D W,eds.Biological Diversity and Function in Soils. Cambridge: Cambridge University Press, 2005.
|
[35] |
Bastian F, Bouziri L, Nicolardot B, et al.Impact of wheat straw decomposition on successional patterns of soil microbial community structure[J].Soil Biology and Biochemistry, 2009, 41: 262-275.
|
[36] |
Blagodatskaya E, Khomyakov N, Myachina O, et al.Microbial interactions affect sources of priming induced by cellulose[J]. Soil Biology and Biochemistry, 2014, 74: 39-49.
|
[37] |
Stursova M, Sinsabaugh R L.Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation[J]. Soil Biology and Biochemistry, 2008, 40: 550-553.
|
[38] |
Lorenz K, Preston C M, Raspe S, et al.Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C-CPMAS-NMR[J].Soil Biology and Biochemistry,2000, 32: 779-792.
|
[39] |
Allison S D, Vitousek P M.Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J]. Biotropica,2004, 36: 285-296.
|
[40] |
Sinsabaugh R L, Lauber C L, Weintraub M N, et al.Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008, 11: 1 252-1 264.
|
[41] |
Kellner H, Luis P, Schlitt B, et al.Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil[J].Soil Biology and Biochemistry,2009, 41: 1 380-1 389.
|
[42] |
Theuerl S, Dörr N, Guggenberger G, et al.Response of recalcitrant soil substances to reduced N deposition in a spruce forest soil: Integrating laccas-encoding genes and lignin decomposition[J].FEMS Microbiology Ecology,2010, 73: 166-177.
|
[43] |
Sinsabaugh R L.Phenol oxidase, peroxidase and organic matter dynamics of soil[J].Soil Biology and Biochemistry, 2010, 42: 391-404.
|
[44] |
Henriksen T, Breland T.Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry,1999, 31: 1 121-1 134.
|
[45] |
Cookson W R, Abaye D A, Marschner P, et al.The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure[J].Soil Biology and Biochemistry,2005, 37: 1 726-1 737.
|
[46] |
Huang Y, Sass R L, Fisher F M.A semi-empirical model of methane emission from flooded rice paddy soils[J]. Global Change Biology,1998, 4: 247-268.
|
[47] |
Watanabe A, Katoh K, Kimura M.Effect of rice straw application on CH4 emission from paddy fields[J].Soil Science and Plant Nutrition,1993, 39: 707-712.
|
[48] |
Watanabe A, Satoh Y, Kimura M.Estimation of the increase in CH4 emission from paddy soils by rice straw application[J]. Plant and Soil,1995, 173: 225-231.
|
[49] |
Lu Y H, Wassmann R, Neue H U, et al.Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil[J]. Soil Science Society of America Journal,2000, 64: 2 011-2 017.
|
[50] |
Watanabe T, Hosen Y, Agbisit R, et al.Changes in community structure of methanogenic archaea brought about by water-saving practice in paddy field soil[J]. Soil Biology & Biochemistry,2013, 58: 235-243.
|
[51] |
Ma K, Qiu Q F, Lu Y H.Microbial mechanism for rice variety control on methane emission fromrice field soil[J]. Global Change Biology, 2010, 16: 3 085-3 095.
|
[52] |
Ma K, Lu Y H.Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75: 446-456.
|
[53] |
Zou Jianwen, Huang Yao, Zong Lianggang,et al.A field study on CO2, CH4 and N2O emissions from rice paddy and impact factors[J]. Acta Scientiae Circumstantie, 2003, 23(6): 758-764.
|
|
[邹建文, 黄耀, 宗良纲, 等. 稻田CO2, CH4和N2O排放及其影响因素[J]. 环境科学学报, 2003, 23(6): 758-764.]
|
[54] |
Khalil M A, Rasmussen R A, Shearer M J, et al.Factors affecting methane emissions from rice fields[J]. Journal of Geophysical Research—Atmospheres,1998, 19: 25 219-25 231.
|
[55] |
Yang S S, Chang H L.Effect of environmental conditions on methane production and emission from paddy soil[J]. Agriculture, Ecosystems and Environment,1998, 69: 69-80.
|
[56] |
Ding Weixin, Cai Zucong.Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands[J]. Acta Ecologica Sinica,2002, 22(10): 1 672-1 679.
|
|
[丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1 672-1 679.]
|
[57] |
Ding Weixin, Cai Zucong.Methane emission from mires and its influencing factors[J].Scientia Geographica Sinica, 2002, 22(5): 619-625.
|
|
[丁维新, 蔡祖聪. 沼泽甲烷排放及其主要影响因素[J]. 地理科学, 2002, 22(5): 619-625.]
|
[58] |
Yu K W, Wang Z P, Vermoesen A, et al.Nitrous oxide and methane emissions from different soil suspensions: Effect of soil redox status[J].Biology and Fertility of Soils, 2001, 34: 25-30.
|
[59] |
Mer J L, Roger P.Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37: 25-50.
|
[60] |
Yan X, Yagi K, Akiyama H, et al.Statistical analysis of the major variables controlling methane emission from rice fields[J].Global Change Biology,2005, 11(7): 1 131-1 141.
|
[61] |
Khalil M, Boeckx P, Rosenani A, et al.Nitrogen transformations and emission of greenhouse gases from three acid soils of humid tropics amended with N sources and moisture regime. II. Nitrous oxide and methane fluxes[J].Communications in Soil Science and Plant Analysis,2001, 32: 2 909-2 924.
|
[62] |
Guo Dayong, Fan Mingsheng, Zhang Fusuo.A review on biochar application in arable soils[J]. Plant Nutrition and Fertilizer Science,2012, 18(5): 1 252-1 261.
|
|
[郭大勇, 范明生, 张福锁. 农田土壤黑碳应用研究进展[J]. 植物营养与肥料学报, 2012, 18(5): 1 252-1 261.]
|
[63] |
Friedlingstein P, Cox P, Betts R, et al.Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison[J]. Journal of Climate,2006, 19: 3 337-3353.
|
[64] |
Huang Yao, Zhang Wen, Zheng Xunhua, et al.Estimates of methane emission from Chinese rice paddies by linking a model to GIS database[J]. Acta Ecologica Sinica, 2006, 26(4): 980-988.
|
|
[黄耀, 张稳, 郑循华, 等. 基于模型和GIS技术的中国稻田甲烷排放估计[J]. 生态学报, 2006, 26(4): 980-988.]
|
[65] |
Zheng X, Wang M, Wang Y, et al.Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields[J]. Advances in Atmospheric Sciences,1998,15: 569-579.
|
[66] |
Yuan H Z, Ge T D, Chen C Y, et al.Microbial autotrophy plays a significant role in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012,78: 2 328-2 336.
|
[67] |
Wu X H, Ge T D, Wang W, et al.Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil[J].Frontiers in Microbiology,2015, 6:379, doi: 10.3389/fmicb.2015.00379.
|
[68] |
Yuan H Z, Ge T D, Wu X H, et al.Long-term field fertilization alters the div ersity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology,2012,95:1 061-1 071.
|
[69] |
Hart K M, Kulakova A N, Allen C C R, et al. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter[J].Environmental Science & Technology,2013, 47: 5 218-5 317.
|
[70] |
Wu X H, Ge T D, Yuan H Z, et al.Changes in bacteria CO2 fixation with depth in agricultural soils[J]. Applied Microbiology and Biotechnology,2014, 98: 2 309-2 319.
|
[71] |
Chen Xiaojuan, Wu Xiaohong, Jian Yan, et al.Carbon dioxide assimilation potential,functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J].Environment Science,2014, 35(3): 354-360.
|
|
[陈晓娟, 吴小红, 简燕, 等. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 2014, 35(3): 354-360.]
|
[72] |
Yuan H Z, Ge T D, Chen X B, et al.Abundance and diversity of CO2-assimilating bacteria and algae within red agricultural soils are modulated by changing management practice[J].Microbial Ecology,2015, doi: 10.1007/s00248-015-0621-8.
|
[73] |
Haynes R J.Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J].Soil Biology and Biochemistry,2000,(32):211-219.
|
[74] |
Boddy E, Hill P W, Farrar J, et al.Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils[J].Soil Biology and Biochemistry,2007,(39):827-835.
|
[75] |
Kalbitz K, Schmerwitz J, Schwesig D.et al.Biodegradation of soil-derived dissolved organic matter as related to its properties[J].Geoderma,2003,(113):273-291.
|
[76] |
Alberti G, Vicca S, Inglima I, et al.Soil C-N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests[J].iForest-Biogeosciences and Forestry,2015,(8):195-206.
|
[77] |
Weintraub M N, Schimel J P.Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils[J].Ecosystems,2003,(6):129-143.
|
[78] |
Fisk M, Santangelo S, Minick K.Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J].Soil Biology and Biochemistry, 2015,(81):212-218.
|
[79] |
Dharmakeerthi R S, Hanley K, Whitman T, et al.Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years[J].Soil Biology and Biochemistry, 2015,(88):268-274.
|
[80] |
Wang Q, Wang S, He T, et al.Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils[J].Soil Biology and Biochemistry, 2014,(71):13-20.
|
[81] |
Conde E, Cardenas M, Ponce-Mendoza A, et al.The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil[J].Soil Biology and Biochemistry, 2005,(37):681-691.
|
[82] |
Dimassi B, Mary B, Fontaine S, et al.Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization[J].Soil Biology and Biochemistry, 2014,(78):332-339.
|
[83] |
Nelson P N, Dictor M C, Soulas G.Availability of organic carbon in soluble and particle-size fractions from a soil profile[J].Soil Biology and Biochemistry,1994,(26):1 549-1 555.
|
[84] |
Keller J K, Bridgham S D, Chapin C T, et al.Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen[J].Soil Biology and Biochemistry,2005,(37):1 197-1 204.
|
[85] |
Fisk M, Santangelo S, Minick K.Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J].Soil Biology and Biochemistry,2015,(81):212-218.
|
[86] |
Liu D Y, Song C C.Effects of phosphorus enrichment on mineralization of organic carbon and contents of dissolved carbon in a freshwater marsh soil[J].China Environmental Science,2008,(28):769-774.
|
[87] |
Kirkby C A, Richardson A E, Wade L J, et al.Carbon-nutrient stoichiometry to increase soil carbon sequestration[J].Soil Biology and Biochemistry,2013,(60):77-86.
|
[88] |
Creamer C A, Jones D L, Baldock J A, et al.Stoichiometric controls upon low molecular weight carbon decomposition[J].Soil Biology and Biochemistry,2014,(79): 50-56.
|
[89] |
Ross D J, Speir T W, Kettles H A, et al.Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: Influence of season and slow-release P and S fertilizer[J].Soil Biology and Biochemistry,1995,(27):1 431-1 443.
|
[90] |
Sinsabaugh R L, Manzoni S, Moorhead D L, et al.Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling[J].Ecology Letters, 2013,(16): 930-939.
|
[91] |
Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012,(43):313-343.
|
[92] |
Mooshammer M, Wanek W, Schnecker J, et al.Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J].Ecology, 2011,(93):770-782.
|
[93] |
McBratney A B, Mendonca M L, Minasny B. On digital soil mapping[J].Geoderma,2003,117: 3-52.
|
[94] |
Grunwald S, Thompsonb J A, Boettinger J L.Digital soil mapping and modeling at continental scales: Finding solutions for global issues[J].Soil Science Society of America Journal,2011, 75(4): 1 201-1 213.
|
[95] |
Taylor J A, Brasseur G P, Zimmerman P R.A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model[J].Journal of Geophysical Research,1991, 96: 3 013-3 044.
|
[96] |
Elser J J, Fangan W F, Dcnno R F, et al.Nutritional constraints in terrestrial and freshwater food webs[J]. Nature,2000, 408(6 812): 578-580.
|
[97] |
Chow A T,Tanji K K,Gao S D,et al.Temperature,water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J].Soil Biology and Biochemistry,2006,38(3): 477-488.
|
[98] |
Guo Jiawei, Zou Yuanchun, Huo Lili, et al.DNDC model, a model of biogeochemical processes: Research progress and applications[J].Chinese Journal of Applied Ecology,2013,24(2): 571-580.
|
|
[郭佳伟,邹元春,霍莉莉,等.生物地球化学过程模型DNDC的研究进展及其应用[J].应用生态学报,2013,24(2): 571-580.]
|
[99] |
Chen Haixin, Sun Benhua, Feng Hao, et al.Simulation of soil carbon contents and crop yields in long-term fertilized cropland in Guanzhong area using DNDC model[J]. Journal of Agro-Environment Science,2014,33(9): 1 782-1 790.
|
|
[陈海心,孙本华,冯浩,等.应用DNDC 模型模拟关中地区农田长期施肥条件下土壤碳含量及作物产量[J].农业环境科学学报,2014,33(9):1 782-1 790.]
|
[100] |
Harris P, Fotheringham A S, Crespo P, et al.The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets[J]. Mathematical Geosciences, 2010, 42(6): 657-680.
|