地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1204

综述与评述 上一篇    下一篇

生长速率假说及其在浮游动物营养动力学中的研究进展
苏 强   
  1. 1.中国科学院计算地球动力学重点实验室,北京 100049;2.中国科学院大学,北京 100049
  • 收稿日期:2012-04-05 修回日期:2012-08-20 出版日期:2012-11-10
  • 基金资助:

    中国科学院知识创新工程重要方向项目“浮游植物粒级结构对海洋酸化的响应”(编号:Y225013EA2);中国科学院研究生院院长基金项目“热带珊瑚礁内浮游植物对陆源物质输入的响应及应用研究”(编号:O95101MY00)资助.

Growth Rate Hypothesis Research Progresses: Implications for Zooplankton

Su Qiang   

  1. 1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China;2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-04-05 Revised:2012-08-20 Online:2012-11-10 Published:2012-11-10

生物体由元素组成,其生长、繁殖以及代谢过程均涉及营养元素的吸收、利用与储存。有机体的P含量决定了RNA的形成,并作用于核糖体,进而对蛋白质和生长速率产生影响。浮游动物体内P含量增加,以及C∶ P和N∶ P的降低,主要反映了不同生长速率下,富P的核糖体RNA含量的改变。关于生长速率假说(Growth Rate Hypothesis,GRH)的研究表明,在低C∶P、高P含量的饵料条件下,浮游动物C∶ P和N∶P的稳态性特征发生改变,将获取的P分配至RNA中,增加蛋白质合成,提高生长速率;反之,浮游动物的次级生产力将会降低,C的同化效率和传递效率下降,进而对生态系统的C收支产生影响。加强浮游动物GRH的研究,有助于增强对生态系统C收支以及未来变化过程的认识。

All organisms are composed of the same major elements, which uptakes, incorporation and storage would affect the organism growth, reproduction and metabolism processes. Phosphorus (P) determined the amount of rRNA in many organisms, which would constrain consumer concentrations of ribosome and thus protein synthesis and growth rate. P content increase and thus decreased C: [P and N: P ratios in many biota have been hypothesized to reflect P-rich ribosomal RNA at different growth rates(the Growth Rate Hypothesis, GRH). The GRH denoted that the C:P and N:P homeostasis in zooplankton fed with low C: ]P and high P food would deviate and increase allocation to Prich RNA to meet the protein synthesis demands of rapid growth; otherwise, secondary production would decrease and reduce C assimilation and transfer efficiency which would strongly bear on the sequestration of C in ecosystems. This paper reviews the framework of GRH in zooplankton, which aims to enhance the insight for C cycling and sequestration in ecosystems and their future tendency.

中图分类号: 

[1]Elser J J, Hamilton A. Stoichiometry and the new biology—The future is now[J].PLOS Biology,2007,5(7): 1 403-1 405.

[2]Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J].Acta Ecologica Sinica, 2008, 28(8): 3 937-3 947.[王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3 937-3 947.]

[3]Hall E K, Maixner F, Franklin O, et al. Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches[J].Ecosystems,2011, 14(2): 261-273.

[4]Jeyasingh P D, Weider L J. Fundamental links between genes and elements: Evolutionary implications of ecological stoichiometry[J]. Molecular Ecology, 2007, 16(22): 4 649-4 661.

[5]Schade J D, Macneill K, Thomas S A, et al. The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams[J].Freshwater Biology, 2011, 56(3): 424-436.

[6]He Jinsheng, Han Xingguo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J].Chinese Journal of Plant Ecology, 2010,34(1): 2-6.[贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010,34(1): 2-6.]

[7]Tsoi W Y, Hadwen W L, Fellows C S. Spatial and temporal variation in the ecological stoichiometry of aquatic organisms in an urban catchment[J]. Journal of the North American Benthological Society, 2011, 30(2): 533-545.

[8]Elser J. Biological stoichiometry: A chemical bridge between ecosystem ecology and evolutionary biology[J].American Naturalist, 2006, 168(6): S25-S35.

[9]Kyle M, Acharya K, Weider L J, et al. Coupling of growth rate and body stoichiometry in Daphnia: A role for maintenance processes?[J]. Freshwater Biology, 2006, 51(11): 2 087-2 095.

[10]Hessen D O. Nutrient element limitation of zooplankton production[J]. American Naturalist, 1992, 140(5): 799-814.

[11]Saikia S K, Nandi S. C and P in aquatic food chain: A review on C∶ [KG-*2]P stoichiometry and PUFA regulation[J]. Knowledge and Management of Aquatic Ecosystems,2010,398(3):1-14.

[12]Elser J J, Dobberfuhl D R, Mackay N A, et al. Organism size, life history, and N∶ [KG-*2]P stoichiometry[J].Bioscience,1996, 46(9): 674-684.

[13]Elser J J, O’brien W J, Dobberfuhl D R, et al. The evolution of ecosystem processes: Growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats[J]. Journal of Evolutionary Biology, 2000, 13(5): 845-853.

[14]Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550.

[15]Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6(10): 936-943.

[16]Zeng Dehui, Chen Guangsheng. Ecological stoichiometry: A science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1 007-1 019.[曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1 007-1 019.]

[17]Li Ying. Carbon, Nitrogen and Phosphorus Stoichimetry of Freshwater Zooplankton in Guangdong Province, South China[D]. Guangzhou: Jinan University, 2011.[李莹. 南亚热带地区主要浮游动物种类C、N、P营养元素计量学研究[D]. 广州: 暨南大学,2011.]

[18]Cai Wenxiang. The Application of Biological Stoichiometry in the Biology Mathematics[D]. Changchun: Northeast Normal University, 2006.[蔡文香. 化学计量学原理在生物数学中的应用[D]. 长春: 东北师范大学, 2006.]

[19]Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.

[20]Weider L J, Glenn K L, Kyle M, et al. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C∶ [KG-*2]N∶ [KG-*2]P stoichiometry in the genus Daphnia[J].Limnology and Oceanography, 2004, 49(4): 1 417-1 423.

[21]Weider L J, Elser J J, Crease T J, et al. The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36: 219-242.

[22]Leonardos N, Geider R J. Elemental and biochemical composition of Rhinomonas reticulata (Cryptophyta) in relation to light and nitrate-to-phosphate supply ratios[J].Journal of Phycology,2005, 41(3): 567-576.

[23]Hillebrand H, Frost P, Liess A. Ecological stoichiometry of indirect grazer effects on periphyton nutrient content[J]. Oecologia,2008, 155(3): 619-630.

[24]Zhang Guangtao. Community Ecology of Meso-and Macro-zooplankton in Prydz Bay, Antarctica[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.[张光涛. 南极普里兹湾大、中型浮游动物群落生态学研究[D]. 青岛: 中国科学院海洋研究所, 2000.]

[25]Elser J J, Watts T, Bitler B, et al. Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila[J].Functional Ecology, 2006, 20(5): 846-856.

[26]Ferrao A D, Tessier A J, Demott W R. Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: Testing stoichiometric theory and the growth rate hypothesis[J]. Limnology and Oceanography, 2007, 52(1): 407-415.

[27]Acharya K, Jack J D, Smith A S. Stoichiometry of Daphnia lumholtzi and their invasion success: Are they linked?[J]. Archiv Fur Hydrobiologie, 2006, 165(4): 433-453.

[28]Iwabuchi T, Urabe J. Phosphorus acquisition and competitive abilities of two herbivorous zooplankton, Daphnia pulex and Ceriodaphnia quadrangula[J]. Ecological Research,2010, 25(3): 619-627.

[29]Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶ [KG-*2]N∶ [KG-*2]P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121-130.

[30]Demott W R, Pape B J. Stoichiometry in an ecological context: Testing for links between Daphnia P-content, growth rate and habitat preference[J]. Oecologia, 2005, 142(1): 20-27.

[31]Jensen T C, Hessen D O. Does excess dietary carbon affect respiration of Daphnia?[J]. Oecologia, 2007, 152(2): 191-200.

[32]Sterner R W, Forman R, Hendrixson H, et al. Stoichiometric patterns at the small and the large scale[C]∥SICB Annual Meeting & Exhibition Final Program and Abstracts. Toronto, ON, Canada: Annual Meating and Exlibition of the SICB,2003.

[33]Hawkins A J S. Protein-turnover-a functional appraisal[J]. Functional Ecology, 1991, 5(2): 222-233.

[34]Matzek V, Vitousek P M. N∶ [KG-*2]P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis[J]. Ecology Letters, 2009, 12(8): 765-771.

[35]Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1 390-1 399.

[36]Persson J, Fink P, Goto A, et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J].Oikos,2010, 119(5): 741-751.

[37]Nakazawa T. The ontogenetic stoichiometric bottleneck stabilizes herbivore-autotroph dynamics[J]. Ecological Research,2011, 26(1): 209-216.

[38]Small G E, Pringle C M. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream[J].Oecologia,2010, 162(3): 581-590.

[39]Acharya K, Kyle M, Elser J J. Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis[J]. Limnology and Oceanography, 2004, 49(3): 656-665.

[40]Makino W, Cotner J B. Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: Implications for growth-and resource-dependent variations[J]. Aquatic Microbial Ecology, 2004, 34(1): 33-41.

[41]Ferrao A D, Demott W R, Tessier A J. Responses of tropical cladocerans to a gradient of resource quality[J]. Freshwater Biology, 2005, 50(6): 954-964.

[42]Gillooly J F, Allen A P, Brown J H, et al. The metabolic basis of whole-organism RNA and phosphorus content[J]. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(33): 11 923-11 927.

[43]Main T M, Dobberfuhl D R, Elser J J. N∶ [KG-*2]P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis[J]. Limnology and Oceanography,1997, 42(6): 1 474-1 478.

[44]Vandonk E, Lurling M, Hessen D O, et al. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers[J]. Limnology and Oceanography,1997, 42(2): 357-364.

[45]Hessen D O, Rukke N A. The costs of moulting in Daphnia: Mineral regulation of carbon budgets[J].Freshwater Biology,2000,45(2):169-178.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[4] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[5] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[6] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[7] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[8] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[9] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[10] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[11] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[12] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[13] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[14] 王曦, 周洪建. 重特大自然灾害损失统计与评估进展与展望[J]. 地球科学进展, 2018, 33(9): 914-921.
[15] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
阅读次数
全文


摘要