地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1016 -1028. doi: 10.11867/j.issn.1001-8166.2020.088

综述与评述 上一篇    下一篇

宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展
刘许柯 1, 2, 3( ),付云翀 1, 2( ),周卫健 1, 2,张丽 1, 2,赵国庆 1, 2   
  1. 1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710061
    2.西安 加速器质谱中心 陕西省加速器质谱技术及应用重点实验室,陕西 西安 710061
    3.中国科学院大学,北京 100049
  • 收稿日期:2020-08-17 修回日期:2020-09-23 出版日期:2020-10-10
  • 通讯作者: 付云翀 E-mail:liuxuke@ieecas.cn;fuyc@ieecas.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)“亚太多尺度气候环境变化动力学”(XDB40000000);国家自然科学基金面上项目“利用加速器质谱技术进行汾渭平原地区气溶胶传输的10Be与7Be示踪研究初探”(11975240)

Cosmogenic Nuclide 7Be and 10Be Trace Atmospheric Vertical Transmission: A Review

Xuke Liu 1, 2, 3( ),Yunchong Fu 1, 2( ),Weijian Zhou 1, 2,Li Zhang 1, 2,Guoqing Zhao 1, 2   

  1. 1.State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences (IEECAS),Xi'an 710061,China
    2.Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application,Xi'an AMS Center of IEECAS,Xi'an 710061,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-08-17 Revised:2020-09-23 Online:2020-10-10 Published:2020-11-30
  • Contact: Yunchong Fu E-mail:liuxuke@ieecas.cn;fuyc@ieecas.cn
  • About author:Liu Xuke (1993-), male, Chengdu City, Sichuan Province, Ph.D student. Research areas include beryllium isotope trace. E-mail: liuxuke@ieecas.cn
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences "Dynamics of multi-scale climate and environmental change in the Asia-Pacific"(XDB40000000);The National Natural Science Foundation of China "Preliminary study 10Be and 7Be as tracer for aerosol transfers at Fen-Wei Plain by accelerator mass spectrometry"(11975240)

示踪大气垂直传输交换过程对了解大气中化学物质传输路径、气候变化过程及预测大气环境变化趋势具有重要的科学意义。大气7Be和10Be生成后就迅速被氧化,随干/湿沉降过程到达地表,通过分析其中7Be和10Be浓度以及10Be/7Be值可示踪平流层—对流层交换过程。为全面了解7Be和10Be示踪大气垂直传输交换过程及研究现状,从7Be和10Be的浓度及其比值的分布规律及影响机制方面剖析其对平流层—对流层交换的示踪,对相关示踪研究取得的成果进行了总结和评述。10Be/7Be值作为平流层—对流层交换灵敏示踪剂,相比7Be可避免对流层干/湿沉降及不同气团稀释作用影响,明显地避免纬度变化和太阳周期变化带来自身产率变化的影响。最后指出7Be和10Be示踪平流层—对流层交换时需要注意由南北半球区别、地区纬度变化及研究地点的地理位置特征等带来的影响;各地区长周期高精度的7Be和10Be数据对沉降通量研究、平流层—对流层交换示踪、全球气候模型的建立及验证具有重要作用;重悬浮粉尘对10Be浓度和10Be/7Be值的影响不可忽视,Al元素校正法是去除扬尘影响较为有效的校正方式。

The trace of the vertical atmospheric transport has important scientific significance for understanding the transport path of chemical substances in the atmosphere and the process of climate change, and predicting the changing trend of the atmospheric environment. The 7Be and 10Be in the atmosphere are rapidly oxidized after they are formed, and reach the surface with the dry/wet deposition. The concentration of 7Be, 10Be and the ratio of 10Be/7Be can be measured to trace the Stratosphere-Troposphere Exchange (STE). In order to fully understand the process and research status of 7Be and 10Be trace atmospheric vertical transmission, this work analyzed how the 7Be and 10Be can trace STE from the distribution law and influence the mechanism of their concentration and ratio. At the same time, it summarized and reviewed the results of related research. The reason why 10Be/7Be is used as a sensitive tracer of STE was analyzed. Compared with 7Be, it can avoid tropospheric dry/wet sedimentation and dilution of different air masses. It can also obviously avoid the influence of latitude changes and solar cycle changes on its own yield. Finally, this work pointed out that when tracing STE by 7Be and 10Be, it is necessary to pay attention to the difference between the northern and southern hemispheres, the changes in regional latitude, and the geographic characteristics of the research site. The long-period and high-precision 7Be and 10Be data in various regions play an important role in the deposition flux, the trace STE, and the establishment and verification of global climate models. The influence of resuspended dust on the concentration of 10Be and the ratio of 10Be/7Be cannot be ignored, and the Al element correction method is a more effective correction method to remove the influence of dust.

中图分类号: 

图1 7Be10Be10Be/7Be的变化规律
(a) 7Be、 10Be浓度以及 10Be/ 7Be值的季节变化 [ 29 ];(b) 7Be、 10Be浓度在不同纬度上的变化趋势 [ 35 , 36 ];(c) 7Be、 10Be浓度以及 10Be/ 7Be值在不同海拔上的变化趋势 [ 32 ]10Be/ 7Be 值:小于1.0(第1组,正方形),1.0~2.0(第2组,圆圈),2.0~3.0(第3组,三角形)和大于3.0(第4组,菱形)
Fig.1 Changes of 7Be concentration, 10Be concentration, and 10Be/7Be ratio
(a) The trends of 7Be concentration, 10Be concentration, and 10Be/ 7Be ratio at different seasons [ 29 ]; (b) The trends of 7Be [ 35 ] and 10Be [ 36 ] concentrations at different latitudes; (c) The trends of 7Be concentration, 10Be concentration, and 10Be/ 7Be ratio at different altitudes [ 32 ]. 10Be/ 7Be ratio:<1.0(group 1,square),1.0~2.0(group 2,circle),2.0~3.0(group 3,triangle),and > 3.0(group 4,rhombus)
表1 大气中 7Be10Be在不同纬度及全球平均的产率分布 产率单位 : atmos/(cm2·s), 数据来自参考文献[ 40 ]
Table 1 The production rates of 7Be and 10Be at different latitudes and global average in the atmosphere (unit: atmos/(cm 2·s), data from reference [ 40 ])
图2 大气中7Be、和10Be产率的纬度分布[ 29 ]
S代表平流层,T代表对流层
Fig.2 Distribution of 7Be production rates and 10Be production rates in the atmosphere at different latitudes[ 29 ]
S stands for stratosphere and T stands for troposphere
图3 10Be/7Be值与距对流层顶距离的关系[ 32 ]
Fig.3 10Be/7Be plotted versus distance from the tropopause[ 32 ]
图4 199920147Be10Be10Be/7BeSTE的变化情况[ 28 ]
(a) 7Be在3~6月和10~11月观察到2个峰值;(b) 10Be在3~6月和10~11月观察到1个主峰和1个次小峰;(c) 10Be/ 7Be在3~6月观察到1个峰值,这可归因于此期间发生的STE;NA和DZ分别代表东京站数据和太宰府站数据,其前面的数字代表收集的年份
Fig.4 The Changes of 7Be, 10Be and 10Be/7Be with the STE process between 1999 and 2014[ 28 ]
(a) The 7Be concentration has 2 peaks from March to June and October to November; (b) The 10Be concentration has 1 main peak and 1 minor peak from March to June and October to November, respectively; (c) The 10Be/ 7Be ratio has a peak from March to June, which may be caused by STE. NA and DZ represent the data of Tokyo and Dazaifu station, respectively. The number after the station name represents the year collected
1 James P, Stohl A, Forster C, et al. A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model 2. Mean climate and seasonal variability[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D12): 8 522.
2 Stohl A, Bonasoni P, Cristofanelli P, et al. Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D12): 8 516.
3 Zhou Tao, Jiang Zhuang, Geng Lei. Atmospheric reactive nitrogen cycle and stable nitrogen isotope processes: Progresses and perspectives[J]. Advances in Earth Science, 2019, 34(9): 922-935.
周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程: 问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
4 Trickl T, Vogelmann H, Ries L, et al. Very high stratospheric influence observed in the free troposphere over the northern Alps-just a local phenomenon?[J]. Atmospheric Chemistry and Physics, 2020, 20(1): 243-266.
5 Bian Jianchun. Recent advances in the study of atmospheric vertical structures in upper troposphere and lower stratosphere[J]. Advances in Earth Science, 2009, 24(3): 262-271.
卞建春, 上对流层/下平流层大气垂直结构研究进展[J]. 地球科学进展, 2009, 24(3): 262-271.
6 Wang Weiguo, Liu Xiaolu, Fan Wenxuan, et al. The changes analysis of global potential temperature and height at tropopause[J]. Journal of Yunnan University (Natural Sciences Edition), 2011, 33(1): 51-59.
王卫国, 刘晓璐, 樊雯璇, 等. 大气对流层顶位温与高度的变化分析[J]. 云南大学学报:自然科学版, 2011, 33(1): 51-59.
7 Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4): 403-439.
8 Hu Ning, Zhang Chaolin, Zhong Jiqin, et al. Advances in Stratosphere-Troposphere Exchange research[J]. Advances in Earth Science, 2011, 26(4): 375-385.
胡宁, 张朝林, 仲跻芹, 等. 大气对流层平流层交换 (STE) 研究进展[J]. 地球科学进展, 2011, 26(4): 375-385.
9 Vaughan G, Timmis C. Transport of near-tropopause air into the lower midlatitude stratosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(549): 1 559-1 578.
10 Hintsa E, Boering K, Weinstock E, et al. Troposphere-to-stratosphere transport in the lowermost stratosphere from measurements of H2O, CO2, N2O and O3[J]. Geophysical Research Letters, 1998, 25(14): 2 655-2 658.
11 Dessler A, Sherwood S. Effect of convection on the summertime extratropical lower stratosphere[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D23). DOI:10.1029/2004JD005209.
doi: 10.1029/2004JD005209    
12 Li Bing, Liu Xiaohong, Hong Zhongxiang. The study of the impact of cumulus cloud upon sulfur dioxide and sulfate aerosols[J]. Climatic and Environmental Research, 2000, 1(4): 20-24.
李冰, 刘小红, 洪钟祥. 积云对二氧化硫和硫酸盐气溶胶作用的研究[J]. 气候与环境研究, 2000, 1(4): 20-24.
13 Jing P, Banerjee S. Rossby wave breaking and isentropic stratosphere-troposphere exchange during 1981-2015 in the Northern Hemisphere[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9 011-9 025.
14 Ren Rongcai, Wu Guoxiong, Cai Ming, et al. Progress in research of stratosphere-troposphere interactions: Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau[J]. Acta Meteorologica Sinica, 2014, 72(5): 853-868.
任荣彩, 吴国雄, Cai Ming, 等. 平流层—对流层相互作用研究进展: 等熵位涡理论的应用及青藏高原影响[J]. 气象学报, 2014, 72(5): 853-868.
15 Tarasick D, Carey-Smith T, Hocking W, et al. Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models[J]. Atmospheric Environment, 2019, 198: 496-509.
16 Solomon S, Daniel J S, Neely R, et al. The persistently variable "background" stratospheric aerosol layer and global climate change[J]. Science, 2011, 333(6 044): 866-870.
17 Randel W J, Park M, Emmons L, et al. Asian monsoon transport of pollution to the stratosphere[J]. Science, 2010, 328(5 978): 611-613.
18 Ramaswamy V, Schwarzkopf M, Shine K. Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss[J]. Nature, 1992, 355(6 363): 810-812.
19 Toumi R, Bekki S, Law K S. Indirect influence of ozone depletion on climate forcing by clouds[J]. Nature, 1994, 372(6 504): 348-351.
20 Brost R A, Feichter J, Heimann M. Three-dimensional simulation of 7Be in a global climate model[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D12): 22 423-22 445.
21 Rubino M, Etheridge D M, Thornton D P, et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2 000 years from Law Dome, Antarctica[J]. Earth System Science Data, 2019, 11(2): 473-492.
22 Yan Qiyang, Luo Jiali, Shang Lin, et al. A case study of stratosphere-troposphere exchange during Meiyu season[J]. Journal of Arid Meteorology, 2016, 35(1): 12-22.
颜琦阳, 雒佳丽, 商林, 等. 江淮梅雨期平流层—对流层物质交换过程的个例分析[J]. 干旱气象, 2016, 35(1): 12-22.
23 Stamoulis K, Tsiligou Z, Aslanoglou X, et al. Variation of both tritium (3H) and beryllium (7Be) concentrations in air, rain and humidity samples collected at Ioannina, North-western Greece[J]. HNPS Proceedings, 2019, 26: 220-223.
24 Baskaran M. Radon: A tracer for atmospheric studies[M]//Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Springer: 2016: 63-83.
25 Yang A D, Cartigny P, Desboeufs K, et al. Seasonality in the Δ33S measured in urban aerosols highlights an additional oxidation pathway for atmospheric SO2[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 3 779-3 796.
26 Brattich E, Liu H, Tositti L, et al. Processes controlling the seasonal variations in 210Pb and 7Be at the Mt. Cimone WMO-GAW global station, Italy: A model analysis[J]. Atmospheric Chemistry and Physics, 2017, 17: 1 061-1 080.
27 Terzi L, Kalinowski M. World-wide seasonal variation of 7Be related to large-scale atmospheric circulation dynamics[J]. Journal of Environmental Radioactivity, 2017, 178(179): 1-15.
28 Yamagata T, Nagai H, Matsuzaki H, et al. Decadal variations of atmospheric 7Be and 10Be concentrations between 1998 and 2014 in Japan[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 455: 265-270.
29 Nagai H, Tada W, Kobayashi T. Production rates of 7Be and 10Be in the atmosphere[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1/4): 796-801.
30 Cressy Jr P J. Half-lives of some cosmogenic radionuclides: 7Be, 46Sc, 54Mn, 56Co, and 65Zn[J]. Nuclear Science and Engineering, 1974, 55(4): 450-451.
31 Korschinek G, Bergmaier A, Faestermann T, et al. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(2): 187-191.
32 Jordan C, Dibb J E, Finkel R. 10Be/7Be tracer of atmospheric transport and stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D8). DOI:10.1029/2002JD002395.
doi: 10.1029/2002JD002395    
33 Beer J, McCracken K, Steiger R. Cosmogenic radionuclides: Theory and applications in the terrestrial and space environments[M]//Physics of Earth and Space Environments. Berlin Heidelberg: Springer, 2012.
34 Lal D, Malhotra P, Peters B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology[J]. Journal of Atmospheric and Terrestrial Physics, 1958, 12(4): 306-328.
35 Young J, Silker W. Aerosol deposition velocities on the Pacific and Atlantic oceans calculated from 7Be measurements[J]. Earth and Planetary Science Letters, 1980, 50(1): 92-104.
36 Willenbring J K, von Blanckenburg F. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1/2): 105-122.
37 Kulan A, Aldahan A, Possnert G, et al. Distribution of 7Be in surface air of Europe[J]. Atmospheric Environment, 2006, 40(21): 3 855-3 868.
38 Lal D, Peters B. Cosmic ray produced radioactivity on the Earth[M]//Kosmische Strahlung II/Cosmic Rays II. Springer, 1967: 551-612.
39 Monaghan M C, Krishnaswami S, Turekian K K. The global-average production rate of 10Be[J]. Earth and Planetary Science Letters, 1986, 76(3/4): 279-287.
40 Masarik J, Beer J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D10): 12 099-12 111.
41 Simon Q, Bourlès D L, Thouveny N, et al. Cosmogenic signature of geomagnetic reversals and excursions from the Réunion event to the Matuyama-Brunhes transition (0.7-2.14 Ma interval) [J]. Earth and Planetary Science Letters, 2018, 482: 510-524.
42 Brown M, Korte M. A simple model for geomagnetic field excursions and inferences for palaeomagnetic observations[J]. Physics of the Earth and Planetary Interiors, 2016, 254: 1-11.
43 Zhou W, Priller A, Beck J W, et al. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese Loess record of 10Be[J]. Radiocarbon, 2007, 49(1): 137-158.
44 Zhou W, Xian F, Beck J W, et al. Reconstruction of 130-kyr relative geomagnetic intensities from 10Be in two Chinese Loess Sections[J]. Radiocarbon, 2010, 52(1): 129-147.
45 Beck J W, Zhou W, Li C, et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6 391): 877-881.
46 Brodnik D, Glavi?-Cindro D, Korun M, et al. Negative correlation between the number of sunspots and the occurrence of 7Be and 22Na in the surface air and their contribution to radiation doses[J]. Archives of Industrial Hygiene and Toxicology, 2019, 70(4): 290-295.
47 Baroni M, Bard E, Petit J R, et al. Volcanic and solar activity, and atmospheric circulation influences on cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last 60 years[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7 132-7 145.
48 Dutkiewicz V, Husain L. Stratospheric and tropospheric components of 7Be in surface air[J]. Journal of Geophysical Research: Atmospheres, 1985, 90(D3): 5 783-5 788.
49 Dibb J E, Meeker L D, Finkel R C, et al. Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada[J]. Journal of Geophysical Research: Atmospheres, 1994, 99 (D6): 12 855-12 864.
50 Appenzeller C, Holton J R, Rosenlof K H. Seasonal variation of mass transport across the tropopause[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D10): 15 071-15 078.
51 Ioannidou E, Lepp?nen A P, Melas D, et al. Time lag between the tropopause height and the levels of 7Be concentrations in surface air[J]. HNPS Proceedings, 2019, 24: 102-107.
52 Taylor A, Keith-Roach M, Iurian A, et al. Temporal variability of beryllium-7 fallout in southwest UK[J]. Journal of Environmental Radioactivity, 2016, 160: 80-86.
53 Bhandari N, Lal D, Rama D. Stratospheric circulation studies based on natural and artificial radioactive tracer elements[J]. Tellus, 1966, 18(2/3): 391-406.
54 Dibb J E, Talbot R W, Scheuer E, et al. Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D4). DOI:10.1029/2001JD001347.
doi: 10.1029/2001JD001347    
55 Itoh H, Narazaki Y. Fast descent routes from within or near the stratosphere to the surface at Fukuoka, Japan, studied using 7Be measurements and trajectory calculations[J]. Atmospheric Chemistry and Physics, 2016, 16(10): 6 241-6 261.
56 Liu H, Considine D B, Horowitz L W, et al. Using beryllium-7 to assess cross-tropopause transport in global models[J]. Atmospheric Chemistry and Physics, 2016, 16(7): 4 641.
57 Neroda A S, Goncharova A A, Goryachev V A, et al. Long-range atmospheric transport Beryllium-7 to region the Sea of Japan[J]. Journal of Environmental Radioactivity, 2016, 160: 102-111.
58 Chham E, Milena-Pérez A, Pi?ero-García F, et al. Sources of the seasonal-trend behaviour and periodicity modulation of 7Be air concentration in the atmospheric surface layer observed in southeastern Spain[J]. Atmospheric Environment, 2019, 213: 148-158.
59 Hernández-Ceballos M, Brattich E, Lozano R, et al. 7Be behaviour and meteorological conditions associated with 7Be peak events in Spain[J]. Journal of Environmental Radioactivity, 2017, 166: 17-26.
60 Yamamoto M, Sakaguchi A, Sasaki K, et al. Seasonal and spatial variation of atmospheric 210Pb and 7Be deposition: Features of the Japan Sea side of Japan[J]. Journal of Environmental Radioactivity, 2006, 86(1): 110-131.
61 Wan Guojiang, Zheng Xiangdong, Lee H N, et al. 210Pb and 7Be as tracers for aerosol transfers at Center Guizhou, China: Ⅰ. The explanation by weekly interval[J]. Advances in Earth Science, 2010, 25(5): 492-504.
万国江, 郑向东, Lee H N, 等. 黔中气溶胶传输的210Pb和7Be示踪: Ⅰ.周时间尺度的解释[J].地球科学进展, 2010, 25(5): 492-504.
62 Wan Guojiang, Zheng Xiangdong, Lee H N, et al. 210Pb and 7Be as tracers for aerosol transfers at center Guizhou, China: II. The interpretation by monthly and yearly intervals[J]. Advances in Earth Science, 2010, 25(5): 505-514.
万国江, 郑向东, Lee H N, 等. 黔中气溶胶传输的210Pb和7Be示踪: Ⅱ.月及年时间尺度的剖析[J].地球科学进展, 2010, 25(5): 505-514.
63 Basile S, Burlon R, Tomarchio E. Analysis of 7Be and 210Pb concentration and 7Be/210Pb activity ratio in ground level air in Palermo (Italy) [J]. Radiation Effects and Defects in Solids, 2019, 174(11/12): 998-1 007.
64 Peng A, Liu G, Jiang Z, et al. Wet depositional fluxes of 7Be and 210Pb and their influencing factors at two characteristic cities of China[J]. Applied Radiation and Isotopes, 2019, 147: 21-30.
65 Mohan M, D'souza R S, Nayak S R, et al. A study of temporal variations of 7Be and 210Pb concentrations and their correlations with rainfall and other parameters in the South West Coast of India[J]. Journal of Environmental Radioactivity, 2018, 192: 194-207.
66 Mohan M, D'Souza R S, Nayak S R, et al. Influence of rainfall on atmospheric deposition fluxes of 7Be and 210Pb in Mangaluru (Mangalore) at the Southwest Coast of India[J]. Atmospheric Environment, 2019, 202: 281-295.
67 Huh C A, Su C C, Shiau L J. Factors controlling temporal and spatial variations of atmospheric deposition of 7Be and 210Pb in northern Taiwan[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D16). DOI:10.1029/2006JD007180.
doi: 10.1029/2006JD007180    
68 Dutkiewicz V A, Husain L. Determination of stratospheric ozone at ground level using 7Be/ozone ratios[J]. Geophysical Research Letters, 1979, 6(3): 171-174.
69 Kalabokas P, Jensen N, Roveri M, et al. A study of the influence of tropospheric subsidence on spring and summer surface ozone concentrations at the JRC-Ispra station in northern Italy[J]. Atmospheric Chemistry and Physics, 2020, 20(4): 1 861-1 885.
70 Pan J, Yang Y L, Zhang G, et al. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China[J]. Atmospheric Environment, 2011, 45(20): 3 371-3 380.
71 Lamborg C H, Fitzgerald W F, Graustein W C, et al. An examination of the atmospheric chemistry of mercury using 210Pb and 7Be[J]. Journal of Atmospheric Chemistry, 2000, 36(3): 325-338.
72 Garimella S, Koshy K, Singh S. Concentration of 7Be in surface air at Suva, Fiji[J]. The South Pacific Journal of Natural and Applied Sciences, 2003, 21(1): 15-19.
73 Igarashi Y, Hirose K, Otsuji-Hatori M. Beryllium-7 deposition and its relation to sulfate deposition[J]. Journal of Atmospheric Chemistry, 1998, 29(3): 217-231.
74 Chae J S, Kim G. Large seasonal variations in fine aerosol precipitation rates revealed using cosmogenic 7Be as a tracer[J]. Science of the Total Environment, 2019, 673: 1-6.
75 Raisbeck G, Yiou F, Fruneau M, et al. Cosmogenic 10Be/7Be as a probe of atmospheric transport processes[J]. Geophysical Research Letters, 1981, 8(9): 1 015-1 018.
76 Koch D, Rind D. Beryllium-10/beryllium-7 as a tracer of stratospheric transport[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D4): 3 907-3 917.
77 Hellborg R, Skog G. Accelerator mass spectrometry[J]. Mass Spectrometry Reviews, 2008, 27(5): 398-427.
78 Raisbeck G M, Yiou F. Measurement of 7Be by accelerator mass spectrometry[J]. Earth and Planetary Science Letters, 1988, 89(1): 103-108.
79 Fu Yunchong, Wu Zhenkun, Zhang Li, et al. The research status and progress of measurement for long-lived radioactive beryllium isotopes using accelerator mass spectrometry[J]. Journal of Earth Environment, 2016, 7(6): 537-546.
付云翀, 武振坤, 张丽, 等. 铍的长寿命放射性同位素加速器质谱测量研究与进展[J]. 地球环境学报, 2016, 7(6): 537-546.
80 Zhang L, Fu Y C. Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry[J]. Chinese Physics C, 2017, 41(1): 018201.
81 Noithong P, Rittirong A, Hazama R. In study of the factors influence on variation of Be-7 concentration in surface air at osaka, Japan[J]. Journal of Physics: Conference Series, 2019,1285:012016.
82 Priller A, Berger M, G?ggeler H W, et al. Accelerator mass spectrometry of particle-bound 10Be[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223: 601-607.
83 Zanis P, Gerasopoulos E, Priller A, et al. An estimate of the impact of Stratosphere-to-Troposphere Transport (STT) on the lower free tropospheric ozone over the Alps using 10Be and 7Be measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D12). DOI: 10.1029/2002JD002604.
doi: 10.1029/2002JD002604    
84 Zheng X, Shen C, Wan G, et al. 10Be/7Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O3 variation observed on the Tibetan Plateau[J]. Chinese Science Bulletin, 2011, 56(1): 84-88.
85 Langford A, Aikin K, Eubank C, et al. Stratospheric contribution to high surface ozone in Colorado during springtime[J]. Geophysical Research Letters, 2009, 36(12). DOI:10.1029/2009GL038367.
doi: 10.1029/2009GL038367    
86 Blake W, Walling D, He Q. Fallout beryllium-7 as a tracer in soil erosion investigations[J]. Applied Radiation and Isotopes, 1999, 51(5): 599-605.
87 Chengde S, Beer J, Tungsheng L, et al. 10Be in chinese loess[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 169-177.
88 Graham I, Ditchburn R, Barry B. Atmospheric deposition of 7Be and 10Be in New Zealand rain (1996-98) [J]. Geochimica et Cosmochimica Acta, 2003, 67(3): 361-373.
89 Lal D. Recycling of cosmogenic nuclides after their removal from the atmosphere, special case of appreciable transport of 10Be to polar regions by aeolian dust[J]. Earth and Planetary Science Letters, 2007, 264(1/2): 177-187.
90 Shen C, Yi W, Ding P, et al. 14C and 10Be in dust deposited during the storm of 16-17 April 2006 in Beijing[J]. Radiocarbon, 2013, 55(3): 1 790-1 800.
91 Auer M, Kutschera W, Priller A, et al. Measurement of 26Al for atmospheric and climate research and the potential of 26Al/10Be ratios[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 595-599.
92 Yamagata T, Sugihara S, Morinaga I, et al. Short term variations of 7Be, 10Be concentrations in atmospheric boundary layer[J]. Nuclear Instruments and Methods in Physics Research B, 2010, 268(7/8): 1 135-1 138.
93 Padilla S, López-Gutiérrez J, Manjón G, et al. Meteoric 10Be in aerosol filters in the city of Seville[J]. Journal of Environmental Radioactivity, 2019, 196: 15-21.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[3] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[4] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[5] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[6] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[7] 随伟伟,杨桂朋,丁琼瑶,陆小兰. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.
[8] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[9] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
[10] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[11] 门武,刘广山,陈志刚,何建华,尹明端,余雯. 镭同位素在海洋学研究中的应用及进展[J]. 地球科学进展, 2010, 25(1): 33-42.
[12] 邓英尔,贾疏源,黄润秋,李扬红. 岩溶缝洞系统地下水系研究[J]. 地球科学进展, 2008, 23(5): 489-494.
[13] 余金杰,王登红,王平安,徐珏,李晓峰,陈毓川,陈振宇. 俯冲—碰撞和高压、超高压变质带中的金红石研究进展[J]. 地球科学进展, 2006, 21(1): 47-52.
[14] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[15] 任景玲;张经;刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展, 2005, 20(12): 1314-1320.
阅读次数
全文


摘要