地球科学进展 ›› 2012, Vol. 27 ›› Issue (9): 937 -946. doi: 10.11867/j.issn.1001-8166.2012.09.0937

综述与评述 上一篇    下一篇

布容—松山极性倒转事件的海陆地质记录及其不同步性探讨
孔祥辉 1,2,3, 周卫健 1,2*, 鲜 锋 1,2, 武振坤 1,2   
  1. 1.中国科学院地球环境研究所,黄土与第四纪地质国家重点实验室,陕西 西安 710075;2.西安加速器质谱中心,陕西 西安 710061; 3.中国科学院大学,北京 100049
  • 收稿日期:2012-04-05 修回日期:2012-06-27 出版日期:2012-09-10
  • 通讯作者: 周卫健(1953-),女,河南南乐人,研究员,主要从事宇宙成因核素的环境示踪研究.E-mail:weijian@loess.llqg.ac.cn
  • 基金资助:

    国家自然科学基金项目“最近2.1万年气候快速变化的综合地质记录及时空对比研究”(编号:41023006);中国科学院国家外国专家局创新团队国际伙伴计划“亚洲季风—干旱环境演化中的突变事件、环境效应及机理”(编号:KZZD-EW-TZ-03);黄土与第四纪地质国家重点实验室开放基金项目“黄土10Be样品野外采集及古气候代用指标的测试”(编号:SKLLQG07015)资助.

Brunhes-Matuyama Polarity Reversal Records and Discussion on Its Recording Phase Lag between Ocean and Terrestrial Sediment

Kong Xianghui 1,2,3, Zhou Weijian 1,2, Xian Feng 1,2, Wu Zhenkun 1,2   

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China;2.Xi’an Accelerator Mass Spectrometry Center, Xi’an 710061, China;3.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-04-05 Revised:2012-06-27 Online:2012-09-10 Published:2012-09-10

布容—松山(B/M)极性倒转事件是第四纪发生的最近一次地磁极性倒转,研究地磁极性倒转的特征不仅对理解地磁场演化规律具有重要意义,同时极性倒转通常具有全球等时性,因此常被视为地层划分和全球气候对比的关键时间标记物。然而古地磁研究表明,布容—松山事件在海洋与中国黄土沉积物中的记录存在着“错位”现象,使得基于磁性地层年代框架下的中国黄土—古土壤序列与全球气候记录之间的对比存在不确定性。基于这一问题,重点回顾了B/M倒转事件在海洋与中国黄土沉积物中的研究历史及现状,总结分析了已有对该事件在海陆沉积记录中的“错位”现象不同解释之间的差异;此外,还介绍了最近几年利用中国黄土中的宇宙成因核素10Be记录示踪地磁场变化的新进展,进一步探讨了利用10Be示踪结合古地磁分析手段解决中国黄土中B/M事件记录与海洋沉积物存在“错位”现象的可能性。

he Brunhes-Matuyama (B/M) reversal is the most recent happened geomagnetic polarity reversal since the Quaternary period. The polarity reversal is considered as occurring synchronously around the world and so is a key time marker which can be used to divide  the stratigraphic sequences and correlating climatic proxies between different sediments. It is also very important for understanding the variation in the geomagnetic field. However, the paleomagnetic studies have revealed that the records of B/M reversal in Chinese loesspaleosol and the marine sediments are not synchronous, there is an time/climatic “offset” between these two sediments. The “offset” both leads to a challenge for the certainties of correlation between Chinese loesspaleosol sequences and the global climate records based on the paleomagnetic time scale. To discuss this “offset” question, this paper intends to review the study history and recent progress on the B/M reversal event in marine and Chinese loess sediments, and to  evaluate the possible explanations of this “offset” phenomenon. In addition, the paper also introduces the recent progress of paleogeomagnetic field variation studies traced by cosmogenic nuclide 10Be in Chinese loess, suggesting the feasibility of combining the 10Be with  paleomagnetic analysis to trace the exact position of B/M event recorded in Chinese loess.

中图分类号: 

[1]Zhu Gangkun. Paleogeomagnetism—Basis, Principle, Method, Achievement and Application[M]. Beijing: Science Press, 2005.[朱岗崑. 古地磁学——基础、原理、方法、成果与应用[M]. 北京:科学出版社, 2005.]

[2]Laj C, Channell J E T. Geomagnetic Excursions[M].Elsevier, 2007: 373-416.

[3]Cox A, Doell R R, Dalrymple G B. Reversals of the Earth’s magnetic field[J]. Science,1964, 144(3 626): 1 537-1 543.

[4]Raisbeck G M, Yiou F, Cattani O, et al. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core[J]. Nature, 2006, 444: 82-84.

[5]Tauxe L, Herbert T, Shackleton N J, et al. Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences[J]. Earth and Planetary Science Letters,1996, 140(1/4): 133-146.

[6]Zhu R X, Laj C, Mazaud A. The Matuyama-Brunhes and Upper Jaramillo transitions recorded in a loess section at Weinan, north-certral China[J]. Earth and Planetary Science Letters, 1994, 125: 143-158.

[7]Zhou L P, Shackleton N J. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences[J]. Earth and Planetary Science Letters, 1999, 168: 117-130.

[8]Zhu Rixiang, Pan Yongxin, Guo Bin, et al. A recording phase lag between ocean and continent climate changes: Constrained by the Matuyama/Brunhes polarity boundary[J]. Chinese Science Bulletin,1998, 43(11): 1 131-1 134.[朱日祥, 潘永信, 郭斌, 等. 海陆气候变化记录相滞后:松山—布容极性转换约束[J]. 科学通报, 1998, 43(11): 1 131-1 134.]

[9]Cox A, Doell R R, Dalrymple G B. Geomagnetic polarity epochs and Pleistocene geochronometry[J]. Nature, 1963, 198(4 885): 1 049-1 051.

[10]Cox A. Geomagnetic reversals[J]. Science, 1969, 163(3 864): 237-245.

[11]Mankinen E A, Dalrymple G B. Revised geomagnetic polarity time scale for the interval 0-5 m.y. B.P.[J]. Journal Geophysical Research, 1979, 84(B2): 615-626.

[12]Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300: 431-433.

[13]Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic ocean[J].Paleoceanography,1989, 4(4): 353-412.

[14]Yang Liekun, Wang Fei, He Huaiyu, et al. Achievements and limitations of 40Ar/39Ar dating on young volcanic rocks[J].Seismology and Geology,2009,31(1): 174-185. [杨列坤, 王非, 贺怀宇, 等. 年轻火山岩氩同位素体系定年技术最新进展及问题[J]. 地震地质, 2009, 31(1): 174-185.]

[15]Baksi A K, Hsu V, McWilliams M O, et al. 40Ar/39Ar Dating of the Brunhes-Matuyama geomagnetic field reversal[J].Science, 1992, 256(5 055): 356-357.

[16]Spell T L, McDougall I. Revisions to the age of the Brunhes-Matuyama Boundary and the Pleistocene geomagnetic polarity timescale[J]. Geophysical Research Letters, 1992, 19(12): 1 181-1 184.

[17]Singer B S, Pringle M S. Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from 40Ar/ 39Ar incremental heating analyses of lavas[J]. Earth and Planetary Science Letters, 1996, 139: 47-61.

[18]Singer B S, Hoffman K A, Chauvin A, et al. Dating transitionnally magnetized lavas of the late Matuyama Chron: Toward a new 40Ar/39Ar timescale of reversals and events[J]. Jounal of Geophysical Research, 1999, 104(B1): 679-693.

[19]Singer B S, Hoffman K A, Coe R S, et al. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows[J]. Nature, 2005, 434: 633-636.

[20]Emiliani C. Pleistocene temperatures[J]. The Journal of Geology, 1955, 63 (6): 538-578.

[21]Hays J D, Imbrie J, Shckleton N J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages[J]. Science, 1976, 194(4 270): 1 121-1 132.

[22]Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 1973, 3: 39-55.

[23]Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation[J]. Nature, 1977, 270: 216-219.

[24]Imbrie J, Hays J D, Martinson D G, et al. The Orbital Theory of Pleistocene Climate: Support from a Revised Chronology of the Marine δ18O Record[M]. Dordrecht:D. Reidel Publishing, 1984.

[25]Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy[J]. Quaternary Research, 1987, 27: 1-29.

[26]Raymo M E, Ruddiman W F, Backman J, et al. Late Pliocene variation in northern hemisphere ice sheets and North Atlantic deep water circulation[J]. Paleoceanography, 1989, 4(4): 413-446.

[27]Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81: 251-261.

[28]Channell J E T, Kleiven H F. Geomagnetic palaeointensities and astrochronological ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo Subchron: Palaeomagnetic and oxygen isotope records from ODP Site 983[J]. Philosophical Transactions of the Royal Society A, 2000, 358(1 768): 1 027-1 047.

[29]Horng C S, Lee M Y, Plike H, et al. Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron[J]. Earth Planets Space, 2002, 54: 679-690.

[30]Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: PA1003, doi:10.1029/2004PA001071.

[31]Dreyfus G B, Raisbeck G M, Parrenin F, et al. An ice core perspective on the age of the Matuyama-Brunhes boundary[J]. Earth and Planetary Science Letters, 2008, 274: 151-156.

[32]Ingham M, Turner G. Behaviour of the geomagnetic field during the Matuyama-Brunhes polarity transition[J]. Physics of the Earth and Planetary Interiors, 2008, 168 (3/4): 163-178.

[33]Leonhardt R, Fabian K. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification[J]. Earth and Planetary Science Letters, 2007, 253 (1/2): 172-195.

[34]Cox A, Doell R R, Dalrymple G B. Quaternary Paleomagnetic Stratigraphy[M]. New Jersey, USA: Princeton University Press, 1965: 817-830.

[35]An Zhisheng, Wang Junda, Li Huamei. Paleomagnetic research of the Luochuan loess section[J]. Geochimica,1977, (4): 239-249.[安芷生, 王俊达, 李华梅. 洛川黄土剖面的古地磁研究[J]. 地球化学, 1977, (4): 239-249.]

[36]Heller F, Liu T S. Magnetism of Chinese loess deposits[J]. Geophysical Journal of the Royal Astronomical Society,1984, 77: 125-141.

[37]Yue Leping. New progress in the paleomagnetic study of loess[J]. Geological Review, 1985, 31(5): 453-460.[岳乐平. 我国黄土古地磁学研究新进展[J]. 地质论评, 1985, 31(5): 453-460.]

[38]Liu X M, Liu T S, Xu T C, et al. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province[J]. Geophysical Journal, 1988, 92: 345-348.

[39]An Zhisheng, Kukla G, Liu Tungsheng. Loess stratigraphy in Luochuan of China[J]. Quaternary Sciences, 1989, (2): 155-168.[安芷生, Kukla G, 刘东生. 洛川黄土地层学[J]. 第四纪研究, 1989, (2): 155-168.]

[40]Yue Leping, Lei Xiangyi, Qu Hongjun. A magnetostratigraphic study on the Jingyuan loess section, Gansu, China[J]. Quaternary Sciences, 1991, (4): 349-353.[岳乐平, 雷祥义, 屈红军. 靖远黄土剖面磁性地层的初步研究[J]. 第四纪研究, 1991, (4): 349-353.]

[41]Yue Leping, Qu Hongjun, Yang Yongli, et al. Paleomagnetic research of loess section from Jiuzhoutai, Lanzhou[J]. Journal of Northwest University, 1992, 22(1): 87-94.[岳乐平, 屈红军, 杨永利, 等. 兰州九洲台黄土剖面古地磁研究[J]. 西北大学学报, 1992, 22 (1): 87-94.]

[42]Liu Dongsheng. Loess and Environment[M]. Beijing: Science Press, 1985. [刘东生. 黄土与环境[M]. 北京:科学出版社, 1985.]

[43]Liu Q S, Roberts A P, Rohling E J, et al. Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 102-110.

[44]Jin C S, Liu Q S. Revisiting the stratigraphic position of the Matuyama-Brunhes geomagnetic polarity boundary in Chinese loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2): 309-317.

[45]Wang X S, Yang Z Y, Lvlie R, et al. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma[J]. Physics of the Earth and Planetary Interiors, 2006, 159: 109-117.

[46]Forster T, Heller F. Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate[J]. Earth and Planetary Science Letters, 1994, 128: 501-512.

[47]Barton C E, McElhinny M W. Detrital remanent magnetisation in five slowly redeposited long cores of sediment[J]. Geophysical Research Letters, 1979, 6 (4): 229-232.

[48]deMenocal P B, Ruddiman W F, Kent D V. Depth of post-depositional remanence acquisition in deep-sea sediments: A case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1[J]. Earth and Planetary Science Letters, 1990, 99: 1-13.

[49]Irving E. The Origin of the Palaeomagnetism of the Torridonian Sandstones of North-West Scotland[J]. Philosophical Transactions of the Royal Society of London A, 1957, 250 (974): 100-110.

[50]Irving E, Major A. Post-depositional detrital remanent magnetization in a synthetic sediment[J]. Sedimentology, 1964, 3 (2): 135-143.

[51]Kent D V. Post-depositional remanent magnetisation in deep-sea sediment[J]. Nature, 1973, 246: 32-34.

[52]Suganuma Y, Yokoyama Y, Yamazaki T, et al. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary[J]. Earth and Planetary Science Letters, 2010, 296 (3/4): 443-450.

[53]Assallay A M, Jefferson I, Rogers C D F, et al. Fragipan formation in loess soils: Development of the Bryant hydroconsolidation hypothesis[J]. Geoderma, 1998, 83(1/2): 1-16.

[54]Spassov S, Heller F, Evans M E, et al. A lock-in model for the complex Matuyama-Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau)[J]. Geophysical Journal International, 2003, 155: 350-366.

[55]Heller F, Meili B, Wang J D, et al. Magnetization and Sedimentation History of Loess in the Central Loess Plateau of China[M]. Beijing: China Ocean Press, 1987: 147-163.

[56]Hus J J, Han J. The contribution of loess magnetism in China to the retrieval of past global changes-some problems[J]. Physics of the Earth and Planetary Interiors, 1992, 70(3/4): 154-168.

[57]Kent D V, Schneider D A. Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval[J]. Earth and Planetary Science Letters, 1995, 129: 135-144.

[58]Schneider D A, Kent D V, Mello G A. A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change[J]. Earth and Planetary Science Letters, 1992, 111(2/4): 395-405.

[59]Li C L, Ouyang Z Y, Liu T S, et al. Microtektites and glassy microspherules in loess: Their discoveries and implications[J]. Science in China(Series B), 1993, 36(9): 1 141-1 152.

[60]Helslop D, Langereis C G, Dekkers M J. A new astronomical timescale for the loess deposits of Northern China[J]. Earth and Planetary Science Letters,2000, 184: 125-139.

[61]Carcaillet J, Bourlès D L, Thouveny N, et al. A high resolution authigenic 10Be/9Be record of geomagnetic moment variations over the last 300 ka from sedimentary cores of the Portuguese margin[J]. Earth and Planetary Science Letters, 2004, 219: 397-412.

[62]Muscheler R, Beer J, Kubik P W, et al. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C[J]. Quaternary Science Reviews, 2005, 24: 1 849-1 860.

[63]Wagner G, Masarik J, Beer J, et al. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172: 597-604.

[64]Frank M. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200 000 years[J]. Philosophical Transactions of the Royal Society of London A, 2000, 358: 1 089-1 107.

[65]Masarik J, Beer J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Jounal of Geophysical Research, 1999, 104 (D10): 12 099-12 111.

[66]Shen Chengde, Liu Dongsheng, Beer J, et al. 10Be and the loess accumulating evolution[J]. Science in China (Series B), 1989, (7): 744-751. [沈承德, 刘东生, Beer J, 等. 10Be与黄土的堆积演化[J]. 中国科学:B辑, 1989, (7): 744-751.]

[67]Shen Chengde. 10Be in deep sea sediments[J]. Quaternary Sciences, 1997, (3): 203-210. [沈承德. 深海沉积物10Be记录研究[J]. 第四纪研究, 1997, (3): 203-210.]

[68]Valet J P, Plenier G, Herrero-Bervera E. Geomagnetic excursions reflect an aborted polarity state[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 472-478.

[69]Gu Z Y, Lal D, Liu T S, et al. Five million year 10Be record in Chinese loess and red-clay: Climate and weathering relationships[J]. Earth and Planetary Science Letters, 1996, 144: 273-287.

[70]Shen C D, Beer J, Heller F, et al. 10Be-susceptibility model and quantitative estimates of pedogenic ferromagnetic material flux in Chinese loess[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1/4): 551-554.

[71]Shen C D, Beer J, Kubik P W, et al. Grain size distribution, 10Be content and magnetic susceptibility of micrometer-nanometer loess materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 613-617.

[72]Gu Zhaoyan, Lal D, Guo Zhengtang, et al. Geochemistry of cosmogenic 10Be in loess-paleosol sequences and red clay in the Loess Plateau[J]. Quaternary Sciences, 2000, 20(5): 409-422. [顾兆炎, Lal D, 郭正堂, 等. 黄土高原黄土和红粘土10Be地球化学特征[J]. 第四纪研究, 2000, 20 (5): 409-422.]

[73]Shen Chengde, Yi Weixi, Liu Tungsheng. 10Be records in loess with high resolution and the dating of loess strata[J]. Quaternary Sciences, 1994, (3): 203-213. [沈承德, 易惟熙, 刘东生. 高分辨率10Be记录与黄土地层定年[J]. 第四纪研究, 1994, (3): 203-213.]

[74]Shen Chengde, Yi Weixi, Liu Dongsheng. Advance in 10Be study in Chinese loess[J]. Advances in Earth Science, 1995, 10(6): 590-596. [沈承德, 易惟熙, 刘东生. 中国黄土10Be研究进展[J]. 地球科学进展, 1995, 10 (6): 590-596.]

[75]Zhou Weijian, Chen Maobai, Xian Feng, et al. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in Geo-sciences[J].Science in China (Series D),2007, 37 (10): 1 392-1 399.[周卫健, 陈茂柏, 鲜锋, 等. 多变量线性回归的平均值概念及其在地学研究中的应用[J]. 中国科学:D辑, 2007, 37 (10): 1 392-1 399.]

[76]Zhao Guoqing, Zhou Weijian, Wu Zhenkun, et al. 2010. Progress of tracing paleo-geomagnetic field from cosmogenic nuclide 10Be in loess of China[J]. Advances in Earth Science,2010, 25(9): 927-933. [赵国庆, 周卫健, 武振坤, 等. 黄土中宇宙成因核素10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25 (9): 927-933.]

[77]Zhou W J, Xian F, Beck J W, et al. Reconstruction of 130-kyr relative geomagnetic intensities from 10Be in two Chinese loess sections[J]. Radiocarbon,2010, 52 (1): 129-147.

[78]Channell J E T, Xuan C, Hodell D A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500)[J]. Earth and Planetary Science Letters,2009, 283: 14-23.

[79]Guyodo Y, Valet J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399: 249-252.

[80]Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435: 802-805.

[81]Zhou Liping, Shackleton N J, Dodonov A E. Stratigraphical interpretation of geomagnetic polarity boundaries in Eurasian loess[J]. Quaternary Sciences, 2000, 20(2): 196-202.[周力平, Shackleton N J, Dodonov A E. 欧亚黄土中古地磁极性界线的地层学解释[J]. 第四纪研究, 2000, 20 (2): 196-202.]

[1] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[2] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[3] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[4] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[5] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[6] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[7] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[8] 刘伟男,王汝建,陈建芳,程振波,陈志华,孙烨忱. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展, 2012, 27(2): 209-216.
[9] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[10] 姚玉鹏,刘羽. 第四纪作为地质年代和地层单位的国际争议与最终确立[J]. 地球科学进展, 2010, 25(7): 775-781.
[11] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[12] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[13] 张家武,何晶,陈硕,李双. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题[J]. 地球科学进展, 2009, 24(11): 1229-1237.
[14] 秦养民,谢树成,顾延生,王军霞,周修高. 第四纪环境重建的良好代用指标——有壳变形虫记录与古生态学研究进展[J]. 地球科学进展, 2008, 23(8): 803-812.
[15] 杨晓燕;夏正楷;崔之久. 第四纪科学与环境考古学[J]. 地球科学进展, 2005, 20(2): 231-239.
阅读次数
全文


摘要