Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (3): 327-336    DOI: 10.11867/j.issn.1001-8166.2012.03.0327
研究论文     
南海西部54万年以来元素地球化学记录及其反映的古环境演变
贺子丁,刘志飞*,李建如,谢昕
同济大学海洋地质国家重点实验室,上海200092
Elemental Geochemical Records in the Western South China Sea since 540 ka and Their Paleoenvironmental Implications
He Ziding, Liu Zhifei, Li Jianru, Xie Xin
State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
 全文: PDF(1838 KB)  
摘要:

通过对南海西部上升流区MD05-2899孔开展高分辨率碳酸盐地层学和XRF岩芯扫描元素地球化学分析,重建了晚第四纪54万来以来东亚夏季风的演化历史,探讨海平面升降对南海西部陆源碎屑供应量的影响。研究选用了ln(Ba/Al)作为该海区古生产力的指标,ln(Br/Al)作为有机物的指标,ln(Ti/Al)作为陆源碎屑供应量的指标。研究结果显示,东亚夏季风在过去54万年以来强度不断增强,具有明显的冰期—间冰期旋回特征,在间冰期强盛和冰期减弱,是控制该海区有机物含量变化的主要因素。东亚夏季风不断强盛可能直接导致了南海周边陆地降雨增强,河流径流量加大,使得南海西部上升流区域的陆源碎屑供应量在间冰期明显高于冰期。研究发现,当相对海平面低于-60 m的时候,大面积暴露的巽他陆架可能向南海西部深水区输入大量陆源碎屑物质,造成研究站位的陆源碎屑供应量在冰盛期出现高值。因此,晚第四纪的东亚夏季风演化和海平面升降共同控制了南海西部上升流区陆源碎屑物质供应量的变化。

关键词: 碳酸盐地层XRF岩芯元素扫描东亚夏季风海平面变化晚第四纪南海    
Abstract:

 High-resolution carbonate stratigraphy and XRF core-scanning elemental geochemistry were analyzed at Core MD05-2899 in the upwelling area of the western South China Sea to reconstruct the evolution history of the East Asian Summer Monsoon (EASM) over the past 540 ka in the late Quaternary and to study the effect of sea level change on terrigenous material supply to the western South China Sea. Three proxies of elemental ratios were chosen for indicating paleoenvironmental changes: ln(Ba/Al) for the paleoproductivity, ln(Br/Al) for the organic matters, and ln(Ti/Al) for the terrigenous material supply. Our results show that the EASM has been continually enhanced over the past 540 ka and presents strong glacial-interglacial cyclicity with strengthened intensity during interglacials and vice versa. The EASM could be the major factor controlling the variation pattern of organic matters in the western South China Sea. The strengthened EASM could directly enhance the precipitation on lands surrounding the South China Sea, increase the runoff of their drainage basins, and finally produce higher terrigenous material supply during interglacial than glacial periods in the western South China Sea. However, when the relative sea level was lower than 60 m during glacial periods, the broad part of the Sunda Shelf was exposed and enormous amount of terrigenous materials could be eroded and then transported far to the western South China Sea, resulting in the strong terrigenous material supply during glacial maximum periods at Core MD05-2899. Therefore, we suggest that the late Quaternary EASM and sea level change could jointly control the variation of terrigenous material supply in the upwelling area in the western South China Sea.

Key words: Carbonate stratigraphy    XRF element core-scanning    East Asian Summer Monsoon (EASM)    Sea level change    Late Quaternary    South China Sea.
收稿日期: 2012-02-01 出版日期: 2012-03-10
:  P722.7  
基金资助:

国家自然科学基金项目“南海陆源碎屑沉积物的源区、搬运和沉积”(编号:40925008)和“南海东北部底层海流和沉积搬运过程的观测研究”(编号:91128206)资助.

通讯作者: 刘志飞(1969-),男,江苏南京人,教授,博士生导师,主要从事海洋沉积学研究     E-mail: lzhifei@tongji.edu.cn
作者简介: 贺子丁(1988-),男,四川成都人,硕士研究生,主要从事海洋沉积学研究. E-mail:heziding@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.

He Ziding, Liu Zhifei, Li Jianru, Xie Xin. Elemental Geochemical Records in the Western South China Sea since 540 ka and Their Paleoenvironmental Implications. Advances in Earth Science, 2012, 27(3): 327-336.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.03.0327        http://www.adearth.ac.cn/CN/Y2012/V27/I3/327

[1]Wang Pinxian. Global monsoon in a geological perspective[J].Chinese Sciences Bulletin, 2009, 54(7): 1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54 (5): 535-556.]
[2]Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J].Review of Geophysics, 1994, 32:427-476.
[3]Wang P X, Li Q. Introduction[C]Wang P X, Li Q,eds. The South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:1-23.
[4]Huang Wei, Wang Pinxian. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation[J].Science in China (Series D), 1998, 41(2): 195-201.[黄维, 汪品先. 末次冰期以来南海深水区的沉积速率[J]. 中国科学:D辑, 1998, 28(1): 13-17.]
[5]Huang Wei, Wang Pinxian. Accumulation rate characteristics of deep water sedimentation in the  South China Sea during the Last Glaciation and the Holocene[J]. Acta Oceanologica Sinica,2007, 29(5): 69-73.[黄维, 汪品先. 南海深水区末次冰期和冰后期沉积物堆积速率的特征[J]. 海洋学报, 2007, 29(5): 69-73.]
[6]Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1/4): 245-284.
[7]Wang P X, Li Q. Oceanographical and geological background[C]Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:25-73.
[8]Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications[J].Earth-Science Reviews, 2011, 104:92-110.
[9]Liu Zhifei, Zhao Yulong, Li Jianru, et al. Late quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution[J]. Science in China (Series D),2007, 50(11): 1 674-1 684.[刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J].中国科学:D辑, 2007, 37(9):1 176-1 184.]
[10]Jansen J H F, Van der Gaast S J, Koster B, et al. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores[J].Marine Geology,1998, 151: 143-153.
[11]Zhao Quanhong, Wang Pinxian. Progress in Quaternary paleoceanography of the South China Sea: A review[J].Quaternary Sciences, 1999, 6: 481-499.[赵泉鸿, 汪品先.南海第四纪古海洋学研究进展[J].第四纪研究, 1999, 6: 481-499.]
[12]Huang C Y, Wang C C, Zhao M. High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea[J].Terrestrial, Atmospheric and Oceanic Sciences (TAO), 1999, 10(1): 225-238.
[13]Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application[J].Earth and Planetary Science Letters,2008, 274(3/4): 423-438.
[14]Calvert S E, Pedersen T F. Chapter fourteen: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[C]∥Claude H M, Anne De V, eds. Developments in Marine Geology. Elsevier, 2007:567-644.
[15]Liu Z F, Huang W, Li J, et al. Sedimentology[C]Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:171-295.
[16]Zhao M, Wang P X, Tian J, et al. Biogeochemistry and the Carbon reservoir[C]Wang P, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:439-483.
[17]Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor (IPEV), 2005.
[18]Tjallingii R, Rohl U, Kolling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J].Geochemistry Geophysics Geosystems, 2007, 8(2): Q02004, doi: 10.1029/2006GC001393.
[19]Wang Pinxian. Glacial carbonate cycles in western pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.[汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1): 1-11.]
[20]Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7: 143-162.
[21]Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J].Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.
[22]Paillard D, Labeyrie L, Yiou P. Macintosh Program performs time-series analysis[J]. Eos, Transactions American Geophysical Union, 1996, 77(39):379.
[23]Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[C]Berger A, Imbrie J, Hays H, et al, eds. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel Publishing Company, 1984:269-305.
[24]Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280:554-558.
[25]Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic Sediments[J]. Paleoceanography, 1994,9(1):151-168.
[26]Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J].Paleoceanography, 2000, 15(6): 570-592.
[27]Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of pliocene south china sea sediments[J]. Earth and Planetary Science Letters, 2002,201: 621-636.
[28]Wehausen R, Tian J, Brumsack H J, et al. Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea)[C]Prell W L , Wang P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 184: College Station, TX (Ocean Drilling Program). 2003.
[29]Tian J, Xie X, Ma W, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26, PA4202, doi: 10.1029/2010PA002045.
[30]Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J].Paleoceanography, 2000, 15(2): 210-228.
[31]Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry Geophysics Geosystems, 2008, 9, Q05009, doi:10.1029/2007GC001932.
[32]Sathiamurthy E, Voris H K. Maps of Holocene Sea level transgression and submerged lakes on the sunda shelf[J].The Natural History Journal of Chulalongkorn University,2006,2(Suppl.): 1-43.
[33]Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J].Quaternary Science Reviews, 2002, 21(1/3): 295-305.

[1] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[2] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[3] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[4] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[5] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[6] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[7] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[8] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[9] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[10] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[11] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[12] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[13] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[14] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[15] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.