地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 327 -336. doi: 10.11867/j.issn.1001-8166.2012.03.0327

研究论文 上一篇    下一篇

南海西部54万年以来元素地球化学记录及其反映的古环境演变
贺子丁,刘志飞 *,李建如,谢昕   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2012-02-01 修回日期:2012-02-25 出版日期:2012-03-10
  • 通讯作者: 刘志飞(1969-),男,江苏南京人,教授,博士生导师,主要从事海洋沉积学研究 E-mail:lzhifei@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“南海陆源碎屑沉积物的源区、搬运和沉积”(编号:40925008)和“南海东北部底层海流和沉积搬运过程的观测研究”(编号:91128206)资助.

Elemental Geochemical Records in the Western South China Sea since 540 ka and Their Paleoenvironmental Implications

He Ziding, Liu Zhifei, Li Jianru, Xie Xin   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
  • Received:2012-02-01 Revised:2012-02-25 Online:2012-03-10 Published:2012-03-10

通过对南海西部上升流区MD05-2899孔开展高分辨率碳酸盐地层学和XRF岩芯扫描元素地球化学分析,重建了晚第四纪54万来以来东亚夏季风的演化历史,探讨海平面升降对南海西部陆源碎屑供应量的影响。研究选用了ln(Ba/Al)作为该海区古生产力的指标,ln(Br/Al)作为有机物的指标,ln(Ti/Al)作为陆源碎屑供应量的指标。研究结果显示,东亚夏季风在过去54万年以来强度不断增强,具有明显的冰期—间冰期旋回特征,在间冰期强盛和冰期减弱,是控制该海区有机物含量变化的主要因素。东亚夏季风不断强盛可能直接导致了南海周边陆地降雨增强,河流径流量加大,使得南海西部上升流区域的陆源碎屑供应量在间冰期明显高于冰期。研究发现,当相对海平面低于-60 m的时候,大面积暴露的巽他陆架可能向南海西部深水区输入大量陆源碎屑物质,造成研究站位的陆源碎屑供应量在冰盛期出现高值。因此,晚第四纪的东亚夏季风演化和海平面升降共同控制了南海西部上升流区陆源碎屑物质供应量的变化。

 High-resolution carbonate stratigraphy and XRF core-scanning elemental geochemistry were analyzed at Core MD05-2899 in the upwelling area of the western South China Sea to reconstruct the evolution history of the East Asian Summer Monsoon (EASM) over the past 540 ka in the late Quaternary and to study the effect of sea level change on terrigenous material supply to the western South China Sea. Three proxies of elemental ratios were chosen for indicating paleoenvironmental changes: ln(Ba/Al) for the paleoproductivity, ln(Br/Al) for the organic matters, and ln(Ti/Al) for the terrigenous material supply. Our results show that the EASM has been continually enhanced over the past 540 ka and presents strong glacial-interglacial cyclicity with strengthened intensity during interglacials and vice versa. The EASM could be the major factor controlling the variation pattern of organic matters in the western South China Sea. The strengthened EASM could directly enhance the precipitation on lands surrounding the South China Sea, increase the runoff of their drainage basins, and finally produce higher terrigenous material supply during interglacial than glacial periods in the western South China Sea. However, when the relative sea level was lower than 60 m during glacial periods, the broad part of the Sunda Shelf was exposed and enormous amount of terrigenous materials could be eroded and then transported far to the western South China Sea, resulting in the strong terrigenous material supply during glacial maximum periods at Core MD05-2899. Therefore, we suggest that the late Quaternary EASM and sea level change could jointly control the variation of terrigenous material supply in the upwelling area in the western South China Sea.

中图分类号: 

[1]Wang Pinxian. Global monsoon in a geological perspective[J].Chinese Sciences Bulletin, 2009, 54(7): 1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54 (5): 535-556.]
[2]Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J].Review of Geophysics, 1994, 32:427-476.
[3]Wang P X, Li Q. Introduction[C]Wang P X, Li Q,eds. The South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:1-23.
[4]Huang Wei, Wang Pinxian. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation[J].Science in China (Series D), 1998, 41(2): 195-201.[黄维, 汪品先. 末次冰期以来南海深水区的沉积速率[J]. 中国科学:D辑, 1998, 28(1): 13-17.]
[5]Huang Wei, Wang Pinxian. Accumulation rate characteristics of deep water sedimentation in the  South China Sea during the Last Glaciation and the Holocene[J]. Acta Oceanologica Sinica,2007, 29(5): 69-73.[黄维, 汪品先. 南海深水区末次冰期和冰后期沉积物堆积速率的特征[J]. 海洋学报, 2007, 29(5): 69-73.]
[6]Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1/4): 245-284.
[7]Wang P X, Li Q. Oceanographical and geological background[C]Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:25-73.
[8]Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications[J].Earth-Science Reviews, 2011, 104:92-110.
[9]Liu Zhifei, Zhao Yulong, Li Jianru, et al. Late quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution[J]. Science in China (Series D),2007, 50(11): 1 674-1 684.[刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J].中国科学:D辑, 2007, 37(9):1 176-1 184.]
[10]Jansen J H F, Van der Gaast S J, Koster B, et al. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores[J].Marine Geology,1998, 151: 143-153.
[11]Zhao Quanhong, Wang Pinxian. Progress in Quaternary paleoceanography of the South China Sea: A review[J].Quaternary Sciences, 1999, 6: 481-499.[赵泉鸿, 汪品先.南海第四纪古海洋学研究进展[J].第四纪研究, 1999, 6: 481-499.]
[12]Huang C Y, Wang C C, Zhao M. High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea[J].Terrestrial, Atmospheric and Oceanic Sciences (TAO), 1999, 10(1): 225-238.
[13]Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application[J].Earth and Planetary Science Letters,2008, 274(3/4): 423-438.
[14]Calvert S E, Pedersen T F. Chapter fourteen: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[C]∥Claude H M, Anne De V, eds. Developments in Marine Geology. Elsevier, 2007:567-644.
[15]Liu Z F, Huang W, Li J, et al. Sedimentology[C]Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:171-295.
[16]Zhao M, Wang P X, Tian J, et al. Biogeochemistry and the Carbon reservoir[C]Wang P, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:439-483.
[17]Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor (IPEV), 2005.
[18]Tjallingii R, Rohl U, Kolling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J].Geochemistry Geophysics Geosystems, 2007, 8(2): Q02004, doi: 10.1029/2006GC001393.
[19]Wang Pinxian. Glacial carbonate cycles in western pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.[汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1): 1-11.]
[20]Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7: 143-162.
[21]Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J].Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.
[22]Paillard D, Labeyrie L, Yiou P. Macintosh Program performs time-series analysis[J]. Eos, Transactions American Geophysical Union, 1996, 77(39):379.
[23]Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[C]Berger A, Imbrie J, Hays H, et al, eds. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel Publishing Company, 1984:269-305.
[24]Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280:554-558.
[25]Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic Sediments[J]. Paleoceanography, 1994,9(1):151-168.
[26]Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J].Paleoceanography, 2000, 15(6): 570-592.
[27]Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of pliocene south china sea sediments[J]. Earth and Planetary Science Letters, 2002,201: 621-636.
[28]Wehausen R, Tian J, Brumsack H J, et al. Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea)[C]Prell W L , Wang P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 184: College Station, TX (Ocean Drilling Program). 2003.
[29]Tian J, Xie X, Ma W, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26, PA4202, doi: 10.1029/2010PA002045.
[30]Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J].Paleoceanography, 2000, 15(2): 210-228.
[31]Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry Geophysics Geosystems, 2008, 9, Q05009, doi:10.1029/2007GC001932.
[32]Sathiamurthy E, Voris H K. Maps of Holocene Sea level transgression and submerged lakes on the sunda shelf[J].The Natural History Journal of Chulalongkorn University,2006,2(Suppl.): 1-43.
[33]Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J].Quaternary Science Reviews, 2002, 21(1/3): 295-305.

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[4] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[7] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[8] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[9] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[10] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[11] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[12] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[13] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[14] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[15] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
阅读次数
全文


摘要