地球科学进展 ›› 2019, Vol. 34 ›› Issue (12): 1222 -1233. doi: 10.11867/j.issn.1001-8166.2019.12.1222

所属专题: 深海科学研究专刊

深水珊瑚研究进展 上一篇    下一篇

汪品先( )   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2019-10-25 修回日期:2019-11-20 出版日期:2019-12-10

Deep-Sea Coral Forest

Pinxian Wang( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2019-10-25 Revised:2019-11-20 Online:2019-12-10 Published:2020-02-12
  • About author:Wang Pinxian (1936-), male, Suzhou City, Jiangsu Province, Professer, Academician of Chinese Academy of Sciences. Research areas include marine geology and palaeoenvironment. E-mail: pxwang@tongji.edu.cn


The discovery of deep sea coral forests in the spring of 2018 filled a significant gap in the benthos research and even in carbon cycling in the South China Sea. Previously, the researches of deep-sea benthos were restricted to the sediment-covered soft bottom due to the technical limitations, and the rocky hard bottom was believed to be barren of life. Using submersible technique in the mid-1990s, deep-water coral reefs were first discovered in the Atlantic Ocean, which opened a new research direction in marine sciences. Two groups of deep sea corals have been recognized: scleractinian hexacorals and gorgonian octocorals. The aragonite skeleton of the former group build up deep sea coral reefs, while the latter make up deep sea coral forests with high-Mg calcite skeleton in many gorgonian corals. All kinds of carbonate coral skeletons can record environment changes of the deep sea and provide excellent material for high-resolution paleoceanography. Although the development of deep sea coral reefs in the Pacific Ocean is hampered by its extremely shallow aragonite compensation depth, deep sea coral forests are ubiquitous in the ocean. Up to now, most parts of the Pacific have not yet explored in this respect, and deep sea corals remain outside the research scope. The present paper is a literature review and calls for attention to the deep sea forests. It starts with the composition and distribution of deep sea coral reefs and forests, followed by discussions on the significance of deep sea coral forests in marine ecology and in paleoceanographic reconstructions.


图1 南海的深水珊瑚林
(a),(b) 西沙深海的珊瑚林 (2018年“深海勇士号”拍摄); (c) 深海盆海山上的珊瑚林(2018年“ROPOS”拍摄,周怀阳
提供); a为竹节珊瑚 Lepidisis sp.; b为扇珊瑚 Calyptrophora sp.; c为玻璃海绵
Fig.1 Deep coral forests in the South China Sea
(a),(b) Deep-sea coral forests in the Xisha Islands (photo by HOV “Shenhai Yongshi” in 2018); (c) Coral forests on seamounts of the deep South China Sea basin (photo by ROV “ROPOS” in 2018, provided by Zhou Huaiyang). a: Bamboo coral Lepidisis sp.; b: Fan coral Calyptrophora sp.; c: Glass sponge
图2 大西洋深水珊瑚礁研究的迅速发展
(a)有关论文数量的增长趋势 [ 6 ]; (b) 多孔冠珊瑚 L. pertusa;(c) 多眼筛珊瑚 Madrepora oculata [ 7 ]
Fig.2 Rapid development of the research on Atlantic deep-water coral reefs
(a) The increasing trend of the amount of relevant publications [ 6 ]; (b) L. pertusa; (c) Madrepora oculata [ 7 ]
图3 一座典型的深水珊瑚礁
(a)礁体上下分三部分;(b)~(d)“活珊瑚”区(d)由多孔冠珊瑚和多眼筛珊瑚占压倒优势;b 和c分别表示多孔冠珊瑚 L. pertusa的个体(b)和群体(c);(e)死珊瑚区种类最多,有活的柳珊瑚和海绵;(f)“破碎珊瑚”区多包壳型海绵 [ 7 ]
Fig.3 A typical deep-sea coral reef
(a)The reef is vertically constituted by three parts;(b)~(d)The "living coral zone" (d) dominated by Lophelia pertusa and Madrepora oculata,and the individual living L. pertusa (b)interweaved into a community(c);(e)"Dead framework zone" with diverse species including living gorgonian and sponges;(f)"Coral rubble zone" occupied by encrusting sponges [ 7 ]
图4 深水珊瑚礁和碳酸盐泥丘的循环周期[ 9 ]
Fig.4 Periodic cycles of the deep-water coral-reef and carbonate mud-mound[ 9 ]
Inner-circle: The cycling of deep-water coral-reef; Outer-circle: The cycling of carbonate mud-mound during a glacial-interglacial cycle
图5 造礁冷水珊瑚的地理分布[ 9 ]
Fig.5 Geographic distribution of reef-building cold-water corals[ 9 ]
表1 现代大洋的珊瑚种类 [ 16 ]
Table 1 Taxa of corals in the modern Ocean [ 16 ]
图6 深水软珊瑚实例
(a) Paragorgia arborea的群体与珊瑚虫;(b) Primnoa resedaeformis的群体与珊瑚虫;(c)红珊瑚 Corallium rubrum的群体与珊瑚虫 [ 10 ]
Fig.6 Examples of deep-sea Alcyonacea
(a) Community and polyp of Paragorgia arborea; (b) Community and polyp of Primnoa resedaeformis; (c) Community and polyp of the precious coral Corallium rubrum [ 10 ]
图7 竹节珊瑚
(a) 南海不分枝的竹节珊瑚; (b) 南海海山上分枝的竹节珊瑚(周怀阳提供);(c) 竹节珊瑚上端的活珊瑚虫;(d) 竹节珊瑚下部碳酸盐的干、枝,由暗色的珊瑚硬蛋白分成竹节状(c,d选自网页)
Fig.7 Bamboo coral
(a) Un-branched bamboo coral in the South China Sea; (b) Branched bamboo coral found on a deep-water sea-mount of South China Sea (provided by Zhou Huaiyang); (c) Living polyps at the upper part of a bamboo coral; (d) Carbonate trunks and branches of bamboo corals, divided by dark proteinic gorgonian into bamboo-like pattern (photos in c and d from the internet)
图8 两种深水软珊瑚群体形态对水流的适应(据参考文献[ 21 ]修改)
Fig.8 Schematic illustration of two orientation types of deep-sea Alcyonacea in local flow conditionsmodified after reference[ 21 ])
图9 艺术家笔下的深水珊瑚林生态系统[ 10 ]
P. arborea等软珊瑚组成的珊瑚林为蛇尾类和鱼类提供了栖居地
Fig.9 The deep-sea coral forest ecosystem in the work of artists[ 10 ]
The coral forest of P. arborea and others provides habitat for brittle stars and fish
图10 运用多波束回声测深仪探索北大西洋的L. pertusa深水珊瑚礁
(a)多波束地形图揭示挪威岸外的珊瑚礁泥丘;(b) 苏格兰岸外的珊瑚礁泥丘;(c) 挪威岸外的 L. pertusa深水珊瑚礁照片 [ 10 ]
Fig.10 Applying multi-beam echo sounder to explore the L. pertusa deep-sea coral reefs in the North Atlantic
(a) Coral-reef mud-mounds along the Norwegian shore revealed by multi-beam typography; (b) Coral-reef mud-mounds offshore Scotland; (c) A photo of L. pertusa deep-sea coral reef offshore Norway
图11 大洋钻探IODP 307航次在爱尔兰西岸外钻探冷水珊瑚礁[ 36 ]
Fig.11 International Ocean Drilling Program Expedition IODP 307 drilled the cold-water coral reefs off the western coast of Ireland[ 36 ]
图12 大洋钻探ODP182航次在大澳大利亚湾揭示的更新世苔藓虫碳酸盐泥丘
(a)苔藓虫碳酸盐泥丘的生长窗口;(b) ODP 1132井地震剖面显示的苔藓虫碳酸盐泥丘的地层分布;(c)形成碳酸盐泥丘的几种主要苔藓虫 [ 39 ]
Fig.12 Ocean Drilling Program Leg ODP 182 revealed the Pleistocene bryozoan carbonate mud-mount in the Great Australian Bight
(a) Living window for bryozoan carbonate mud-mount; (b) Stratigraphic distribution of bryozoan carbonate mud-mount at Site ODP 1132 revealed by seismic profile; (c) Major bryozoan taxa forming the carbonate mud-mount [ 39 ]
1 Li J R, Wang P X. Discovery of deep-water bamboo coral forest in the South China Sea [J]. Scientific Reports, 2019, 9:15 453. DOI:10.1038/s41598-019-51797-3.
doi: 10.1038/s41598-019-51797-3    
2 Gage J D. Benthic biodiversity across and along the continental margin: Patterns, ecological and historical determinants, and Anthropogenic threats [C]// Wefer G, Billett G, Hebbeln D, et al. Ocean Margin Systems.Springer-Verlag, 2002:307-321.
3 Taviani M, Angeletti L,Canese S, et al. The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2017. DOI: 10.1016/j.dsr2.2015.12.008.
doi: 10.1016/j.dsr2.2015.12.008    
4 Lavaleye M, Duineveld G, Bergman M, et al. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic) [J]. Deep-Sea Rresearch II: Topical Studies in Oceangraphy, 2017, 145: 22-32.
5 Hovland M, Mortensen P B, Brattegard T, et al. Ahermatypic coral banks off mid-Norway: Evidence for a link with seepage of light hydrocarbons [J]. Palaios, 1998, 13:189-200.
6 Arnaud-Haond S, van den Beld I M J, Becheler R, et al. Two pillars of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2017, 145: 110-119.
7 Freiwald A, Fossa J H, Grehan A, et al. Cold-Water Coral Reefs: Out of Sight—No Longer Out of Mind [R]. UNEP-WCMC Biodiversity Series 22, 2004.
8 Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58:163-231.
9 Roberts J M, Wheeler A J, Freiwald A. Reefs of the deep: The biology and geology of cold-water coral ecosystem [J]. Science, 2006, 312:543-547.
10 Roberts J M, Wheeler A, Freiwald A, et al. Cold-Water Corals:The Biology and Geology of Deep-Sea Coral Habitats [M]. Cambridge: Cambridge University Press, 2009.
11 Wienberg C, Titschack J, Freiwald A, et al. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation [J]. Quaternary Science Reviews, 2018,185: 135-152.
12 Paull C K, Neumann A C, am Ende B A, et al. Lithoherms on the Florida-Hatteras slope [J]. Marine Geology, 2000, 166: 83-101.
13 Berger W H. Deep-sea carbonate: Pteropod distribution and the aragonite compensation depth [J]. Deep Sea Research, 1978, 25(5): 447-452.
14 Cairns S D. A brief history of taxonomic research on azooxanthellate Scleractinia (Cnidaria: Anthozoa)[J]. Bulletin of the Biological Society of Washington, 2001, 10: 191-203.
15 Cairns S D. Deep-water corals: An overview with special reference to diversity and distribution of deep-water scleractinian corals[J]. Bulletin of Marine Science, 2007, 81(3):311-322.
16 Roberts J M, Cairns S D. Cold-water corals in a changing ocean [J]. Current Opinion in Environmental Sustainability, 2014, 7:118-126.
17 France S C. Genetic analysis of bamboo corals (Cnidaria: Octocorallia: Isididae): Does lack of colony branching distinguishing Lepidisis from Keratoisis?[J].Bulleting of Marine Science, 2007, 81(3): 323-333.
18 Neves B M, Edinger E, Hillaire-Marcel C, et al. Deep-water bamboo coral forests in a muddy Arctic environment [J]. Marine Biodiversity, 2015, 45:867-871.
19 Song J-I, S-J Hwang, Moon H, et al. Taxonomic study of suborder calcaxonia (Alcyonacea: Octocorallia: Anthozoa) from King Sejong Station, Antarctic [J]. Animal Systematics, Evolution and Diversity, 2012, 28(2): 84-96.
20 Stone R P. Coral habitat in the Aleutian Islands of Alaska: Depth distribution, fine-scale species associations, and fisheries interactions [J]. Coral Reefs, 2006, 25: 229-238.
21 Mortensen P B, Buhl-Mortensen L. Morphology and growth of the Deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea [J]. Marine Biology, 2005, 147(3): 775-788.
22 Tittensor D P, Baco A R, Brewin P E, et al. Predicting global habitatsuitability for stony corals on seamounts[J]. Journal of Biogeography, 2009, 36:1 111-1 128.
23 De Leo F C, Smith C R, Rowden A A, et al. Submarine canyons: Hotspots of benthic biomass and productivity in the deep sea [J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277: 2 783-2 792. DOI: 10.1098/rspb.2010.0462.
doi: 10.1098/rspb.2010.0462    
24 Frutos I, Brandt A, Sorbe J C. Deep-sea suprabenthic communities: The forgotten biodiversity [C] // Rossi S, Bramanti L, Gori A,et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:475-503.
25 Maldonado M, Aguilar R, Bannister R J, et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns[C]// Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:145-183.
26 Rossi S, Bramanti L, Gori A,et al. Animal forests of the world: An overview [C] // Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:1-28.
27 Etnoyer P J. Box 7: Deep-sea corals on seamounts [J]. Oceanography, 2010, 23(1):128-129. DOI:10.5670/oceanog.2010.91.
doi: 10.5670/oceanog.2010.91    
28 Arntz W E. Marine animal forests: Foreword [C] // Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:vii-x.
29 Guizien K, Ghisalberti M. Living in the Canopy of the animal forest: Physical and biogeochemical aspects [C]//Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:507-528.
30 Narbonne G M, Laflamme M, Greentree C, et al. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland [J]. Journal of Paleontology, 2009, 83: 503-523.
31 Ghisalberti M, Gold D A, Laflamme M, et al. Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes [J]. Current Biology, 2014, 24: 305-309.
32 Sherwood O A, Heikoop J M, Sinclair D J, et al. Skeletal Mg/Ca in Primnoa resedaeformis: Relationship to temperature?[C]// Freiwald A, Roberts J M. Cold-water Corals and Ecosystems. Springer-Verlag, 2005:1 061-1 079.
33 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska [J]. Geophysical Research Letters, 2005, 32:L04606.DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919    
34 Roberts J M, Brown C J, Long D, et al. Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats [J]. Coral Reefs, 2005, 24: 654-669.
35 Ferdelman T G, Kano A, Williams T, et al. IODP Expedition 307 Drills cold-water coral mound along the irish continental margin [J]. Scientific Drilling, 2006,(2): 11-16.
36 Kano A, Ferdelman T G, Williams T. The pleistocene cooling built challenger mound, a deep-water coral mound in the NE Atlantic: Synthesis from IODP Expedition 307[J]. The Sedimentary Records, 2010, 8(4):4-9.
37 Li Xianghui, Chen Yunhua, Xu Baoliang, et al. A review of cenozoic deep sea cold-water carbonate mounds and preliminary results of carbon and oxygen isotopes from IODP 307[J]. Advances in Earth Science, 2007, 22(7): 666-672.
李祥辉,陈云华,徐宝亮,等. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
38 Feary D A, Hine A C, Malone M J, et al. Great Australian Bight: Cenozoic Coolwater Carbonates [R]. Proceedings of the Ocean Drilling Program, Initial Reports, 2000: 182.
39 James N P, Feary D A, Betzler C, et al. Origin of Late Pleistocene Bryozoan Reef Mounds: Great Australian Bight [J]. Journal of Sedimentary Research, 2004, 74(1):20-48.
40 Guinotte J M, Orr J, Cairns S, et al. Will human‐induced changes in seawater chemistry alter the distribution of deep‐sea scleractinian corals?[J]. Frontiers in Ecology and the Environment, 2006, 4:141-146.
41 Frank N, Freiwald A, Lopez Correa M, et al. Northeastern Atlantic cold-water coral reefs and climate [J]. Geology, 2011, 39:743-746.
42 Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep‐Sea Coral and Sponge Ecosystems of the United States [R]. NOAA Technical Memorandum NMFS‐OHC‐4. Silver Spring, MD, 2017:467.]
43 Mienis F, van Weering T C E. Introduction: Proceedings ISDSC5 [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2013, 99: 1-5.
44 Edinger E N, Sherwood O A, Piper D J W, et al. Geological features supporting deep-sea coral habitat in Atlantic Canada [J]. Continental Shelf Research, 2011, 31: S69-S84.
[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[3] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[7] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[8] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[9] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[10] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[11] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[12] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[13] 陈春, 高峰, 鲁景亮, 陈松丛. 日本海洋科技战略计划与重点研究布局及其对我国的启示[J]. 地球科学进展, 2016, 31(12): 1247-1254.
[14] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[15] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.