地球科学进展 ›› 2015, Vol. 30 ›› Issue (5): 609 -619. doi: 10.11867/j.issn.1001-8166.2015.05.0609

上一篇    下一篇

基于海洋分析资料的吕宋海峡水交换的月际变化特征
韩钦臣 1( ), 康建成 1, *( ), 王国栋 1, 朱炯 1   
  1. 1. 上海师范大学城市生态与环境研究中心,上海 200234
    2. Fisheries and Oceans Canada Northwest Atlantic Fisheries Centre St. John's, NL, A1C 5X1 Canada
  • 出版日期:2015-06-09
  • 通讯作者: 康建成 E-mail:hqch2011@126.com;kangjc@126.com
  • 基金资助:
    国家自然科学基金项目“东海黑潮区温、盐、流、海面高度多尺度变化过程及其机理研究”(编号:41340045);上海市教委重点学科建设项目“地理学与城市环境”(编号:J50402)资助

Monthly Variation Characteristics of Water Exchange Based on the Analyzed Ocean Data in the Luzon Strait

Qinchen Han 1, Jiancheng Kang 1, Guoqi Han 2, Guodong Wang 1, Jiong Zhu 1   

  1. (1. Urban Ecological and Environmental Research Center, Shanghai Normal University, Shnaghai 200234, China
    2. Fisheries and Oceans Canada Northwest Atlantic Fisheries Centre St. John's, NL, A1C 5X1 Canada)
  • Online:2015-06-09 Published:2015-05-06

利用1993—2006年1~12月AIPO(The joining area of Asia and IndianPacific Ocean)流场数据,分析了吕宋海峡120°E断面水交换流速结构的平均月际变化特征,并计算了通过该断面的水通量,探讨了水通量及其垂向结构的月际和季节变化特征。结果表明:①在断面的南北方向,西向流和东向流分别大致以19.5°N和21.5°N线为界,二者交替相间分布,呈“两进(西向流入南海)两出(东向流出南海)”的结构;21.5°N以南的300 m以深和21.5°N以北的1 000 m以浅海域,常年存在南海水东向流入太平洋。②上层、深层和整个断面的净水通量几乎均为西向流,净水通量冬季最大,春季和秋季次之,夏季最小。中层除12月外,其他各月的净水通量均为东向流出南海,净水通量春季最大,夏季和秋季次之,冬季最小。③整个断面的净水通量,1~ 5月和8~ 11月呈“三明治”结构,6~ 7月呈2层结构;12月呈单层结构,年平均呈“三明治”结构。

The characteristics of the average monthly variation of the velocity distribution of water exchange across the 120°E section in the Luzon Strait is analyzed. The volume transport of this water exchange is calculated, the monthly and seasonal variation structure of the volume transport and its vertical structure are discussed based on the AIPO(The joining area of Asia and IndianPacific Ocean)data from 1993 to 2006. The results show that:①In the north-south direction of the section, the boundary of the westward flow is located at near 19.5°N, while the boundary of the eastward flow is located at near 21.5°N. The velocity distribution of the westward and eastward flows alternate, is characteristic of a two-in(west to flow into the South China Sea)two-out(out of the South China Sea)structure. The water of the South China Sea flows into the Pacific Ocean to the east direction each month throughout the year, in the area as deep as more than 300 m in south of 21.5°N, and less than 1 000 m in north of 21.5°N.②Almost all the net volume transports in the upper, the deeper and the full depth layers flow westward, which claim the largest in winter, followed by autumn and spring, and with a minimum in summer. The net volume transport of the middle layer is the largest in spring, followed by summer and autumn, with a minimum in winter.③The net volume transport of the entire section, features a sandwich structure in January-May and August-November, a two-layer structure in June and July, and a single-layer structure in December. Averagely within a year, the annual average structure of the net volume transport presents a sandwich structure.

中图分类号: 

图1 吕宋海峡地形和断面位置分布 红色线段为研究断面位置
Fig.1 Map showing distribution of the terrain and the section position The red line indicates the 120°E section position
图2 2005年10月吕宋海峡120.5°E断面u-方向流场分布 图(a)中阴影部分和图(b)中虚线部分表示西向流,图(a)中虚线部分和图(b)中实线部分表示东向流;(a)2005年秋季(10月4~ 16日)LADCP现场观测海流资料(cm/s)[ 8 ];(b)2005年秋季(10月4~ 16日)AIPO资料(m/s)
Fig.2 Map showing distribution of the flow in the direction of u across 120°E section in the Luzon Strait in October 2005 The shaded of the figure (a) and the dashed line of the figure (b) show westward flow. The dashed line of the figure (a) and the solid line of the figure (b) show eastward flow. (a)LADCP observation data of flow in the fall of 2005(October 4~16 days(cm/s)[ 8 ];(b)AIPO data used by the paper of flow in the fall of 2005(October 4~16 days(m/s))
图3 吕宋海峡120°E断面流速EOF第一模态(a)第二模态(b)的空间分布
Fig.3 The spatial distribution of the first mode(a)and the second mode(b)of the flow EOF across 120°E section in the Luzon Strait
图4 吕宋海峡120°E断面流速EOF前2个模态时间系数曲线
Fig.4 The time coefficient curve of the first two mode of the flow EOF across 120°E section in the Luzon Strait
图5 吕宋海峡120°E断面1~12月流速(m/s)分布图 虚线表示太平洋水西向流入南海;实线表示南海水东向流入太平洋;紫色线表示0等值线;蓝色垂线为19.5°N标注线;红色垂线为21.5°N标注线
Fig.5 Map showing distribution of the flow across 120°E section in the Luzon Strait from January to December(m/s) Dashed line shows water of the Pacific flow westward into the South China Sea;The solid line shows water of the South China Sea flow eastward into the Pacific;The purple line indicates the 0 contour;The blue vertical line marked for 19.5°N;The red vertical lines marked for 21.5°N
表1 吕宋海峡120°E断面东向流和西向流水通量的相关性分析
Table 1 The correlation Analysis of the flow to the east and west across 120°E section in the Luzon Strait
图6 吕宋海峡120°E断面1~12月东向流和西向流流量变化
Fig.6 The transport volume of the flow to the east and west across 120°E section in the Luzon Strait from January to December
图7 吕宋海峡2月流速(m/s)分布图 红色线表示断面位置
Fig.7 Map showing distribution of the flow in the Luzon Strait in February(m/s) The red line indicates the 120°E section position
图8 吕宋海峡120°E断面各层净流量的变化 负值表示西向流入南海;正值表示东向流入太平洋
Fig.8 Changes of the net volume transport of layers across 120°E section in the Luzon Strait Negative values shows water of the Pacific flow westward into the South China Sea;Positive values shows water of the South China Sea flow eastward into the Pacific
表2 吕宋海峡120°E断面净水通量结构月际变化
Table 2 The monthly changes of the net volume transport structure across 120°E section in the Luzon Strait
[1] Fang Guohong,Wang Yonggang,Wei Zexun,et al.Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47: 55-72.
[2] Tian Jiwei, Yang Qingxuan, Zhao Wei.Enhanced diapycnal mixing in the South China Sea[J].Journal of Physical Oceanography, 2009, 39(12): 3 191-3 203.
[3] Wyrtki K.Physical oceanography of the southeast Asian waters[C]∥Naga Report. Scripps Institution of Oceangraphy, La Jolla, California, 1961:195.
[4] Metzger E J, Hurlburt H E.Coupled dynamics of the South China Sea, the Sulu Sea and the Pacific Ocean[J]. Journal of Geophysical Research, 1996, 101(C5): 12 331-12 352.
[5] Chu P C, Li R.South China Sea isopycnal-surface circulation[J]. Journal of Physical Oceanography, 2000, 30: 2 419-2 438.
[6] Qu T D,Mitsudera H,Yamagata T.Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research,2000, 105(C3): 6 415-6 424.
[7] Liu Qinyu,Yang Haijun,Liu Zhengyu.Seasonal changes characteristics of the South China Sea Sverdrup circulation[J]. Progress in Natural Science, 2000, 10(11): 1 035-1 039.
[刘秦玉, 杨海军, 刘征宇. 南海Sverdrup环流的季节变化特征[J]. 自然科学进展, 2000, 10(11): 1 035-1 039.]
[8] Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al.Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33. L19607, doi: 10.1029/ 2006 GL 026272.
[9] Yang Qingxuan,Tian Jiwei,Zhao Wei.Observation of material fluxes through the Luzon Strait[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(1): 26-32.
[10] Yaremchuk M, Mc Creary J P, Yu Z, et al. The South China Sea throughflow retrieved from climatological data[J]. Journal of Physical Oceanography, 2009, 39: 753-767,doi: 10.1175/2008JPO3955.1.
[11] Yang Qingxuan,Tian Jiwei,Zhao Wei.Observation of Luzon Strait transport in summer 2007[J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2010, 57(5): 670-676.
[12] Wang Zhiyong, Zhao Wei, Zhou Chun, et al.The diagnostic analysis of deep water volume transport through the Luzon Strait[J]. Marine Sciences, 2013, 37(4): 95-102.
[王志勇, 赵玮, 周春, 等. 吕宋海峡深层水体体积输运的诊断分析[J]. 海洋科学, 2013, 37(4):95-102.]
[13] Li Li,Qu T.Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions[J]. Journal of Geophysical Research—Atmospheres, 2006, 111: C05017, doi: 10.1029/2005JC003164.
[14] Yang Chenghao, Liao Guanghong, Yuan Yaochu, et al.Structures of velocity profile in the Luzon Strait measured by LADCP in April 2008[J]. Acta Oceanologica, 2013, 35(3): 1-10.
[杨成浩, 廖光洪, 袁耀初, 等. ADCP观测得到的2008年4月吕宋海峡流速剖面结构[J]. 海洋学报, 2013, 35(3): 1-10.]
[15] Xie Q, Xiao J G, Wang D X, et al.Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs[J]. Chinese Science Bulletin, 2013, 58: 4 000-4 011,doi: 10.1007/s11434-013-5791-5.
[16] Chen C T A, Wang S L. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea[J]. Journal of Geophysical Research—Atmospheres, 1998, 103: 12 683-12 688.
[17] Wang Z, Yuan D L, Hou Y J.Effect of meridional wind on gap-leaping western boundary current[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(2): 354-358.
[18] Zhang Z, Zhao W, Tian J, et al.Spatial structure and temporal variability of the zonal flow in the Luzon Strait[J]. Journal of Geophysical Research—Oceans,2015,120, doi: 10.1002/2014JC010308.
[19] Wang G H,Su J L,Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21): OCE6.1 -OCE6.4.
[20] Wang D, Liu Q, Huang R X, et al.Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33: L14605, doi:10.1029/2006GL026316.
[21] Yang J, Lin X, Wu D.On the dynamics of the seasonal variation in the South China Sea throughflow transport[J]. Journal of Geophysical Research—Oceans, 2013, 118: 6 854-6 866, doi:10.1002/2013JC009367.
[22] Tozuka T, Qu T,Yamagata T.Dramatic impact of the South China Sea on the Indonesian Throughflow[J]. Geophysical Research Letters, 2007, 34: L12612, doi: 10. 1029/ 2007 GL030420.
[23] Bao Xianwen, Ju Xia, Wu Dexing.Characteristics of water exchange across 120°E section in the Luzon Strait[J]. Periodical of Ocean University of China,2009, 39(1): 1-6.
[鲍献文,鞠霞,吴德星. 吕宋海峡120°E断面水交换特征[J]. 中国海洋大学学报, 2009, 39(1): 1-6.]
[24] Duan Jing, Chen Zhaohui, Wu Lixin.Study on intraseasonal variation of current at the source region of Kuroshio by analyzing the buoy observation data[J]. Advances in Earth Science, 2014, 29(4): 523-530, doi:10.11867/j.issn.1001-8166.2014.04.0523.
[段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530, doi: 10. 11867/j.issn.1001-8166.2014.04.0523.]
[25] Xu Jianping,Shi Maochong,Zhu Bokang,et al.Several characteristics of water exchange in the Luzon Strait[J]. Acta Oceanologica Sinica, 2004, 23(1): 11-22.
[26] Jin Haiyan, Jian Zhimin.Millennial-scale climate variability during the mid-Pleistocene transition period in the northern South China Sea[J]. Quaternary Science Reviews, 2013, 70(15): 15-27.
[27] Liu Jianguo, Li Tiegang, Xiang Rong, et al.Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea[J]. The Holocene, 2013, 23(6): 850-859.
[28] Wu Lixin, Chen Zhaohui.Progresses and challenges in observation studies of physical oceanography[J]. Advances in Earth Science, 2013, 28(5): 542-551.
[吴立新, 陈朝晖.物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5): 542-551.]
[29] Amante C, Eakins B W.ETOPO1v1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis[R]. NOAA Technical Memorandum NESDIS NGDC-24, 2009.
[30] Yan C X,Zhu J,Xie J P.An ocean reanalysis system for the joining area of Asia and Indian-Pacific ocean[J]. Atmospheric and Oceanic Science Letters, 2010, 3: 81-86.
[31] Xu Jianping, Shi Maochong, Zhu Bokang, et al.Several characteristics of water exchange in the Luzon Strait[J]. Acta Oceanologica Sinica, 2004, 23(1): 11-22.
[32] Zhou Hui, Nan Feng, Shi Maochong, et al.Characteristics of water exchange in the Luzon Strait during September 2006[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(3): 650-657.
[33] Dai Zhijun, Liu James T, Fu Gui, et al.A thirteen-year record of bathymetric changes in the North Passage, Changjiang (Yangtze) Estuary[J]. Geomorphology, 2013, 187(1): 101-107.
[34] Wang Dongxiao, Fang Guohong, Wang Qi, et al.Interactions of the Tropical Pacific Circulation Variability and Sea Gas[M]. Beijing:China Ocean Press, 2009.
[王东晓, 方国洪, 王启, 等. 热带太平洋环流变异与海气相互作用[M]. 北京: 海洋出版社, 2009.]
[35] Qiao Fangli.China Regional Oceanography-Physical Oceanography[M]. Beijing: China Ocean Press, 2012.
[乔方利. 中国区域海洋学—物理海洋学[M]. 北京: 海洋出版社, 2012.]
[36] Hu J Y, Kawamura H, Hong H S, et al.A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56: 607-624.
[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[6] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[9] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[10] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[11] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[12] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[13] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[14] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[15] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
阅读次数
全文


摘要