地球科学进展 ›› 2015, Vol. 30 ›› Issue (4): 416 -424. doi: 10.1167/j.issn.1001-8166.2015.04.0416

上一篇    下一篇

南海东北部剪切流场对内波影响的研究进展
蔡树群 1( ), 刘统亚 1, 2, 何映晖 1, 吕海滨 1, 2, 陈植武 1, 刘军亮 1, 谢皆烁 1, 许洁馨 1   
  1. 1.中国科学院南海海洋研究所热带海洋环境国家重点实验室,广东 广州 510301
    2. 中国科学院大学,北京 100049
  • 收稿日期:2015-01-04 修回日期:2015-03-30 出版日期:2015-04-20
  • 基金资助:
    [HT6SS][ZK(]国家自然科学基金重点项目“南海东北部背景剪切流及涡旋对内波生成和演变的影响及其能量转换”(编号:41430964);国家自然科学基金青年科学基金项目“苏禄海年际环流变化及与南海东部环流相关性研究”(编号:41206009)资助

A Prospect of Study on the Effect of Shear Current Field on Internal Waves in the Northeastern South China Sea

Shuqun Cai 1( ), Tongya Liu 1, 2, Yinghui He 1, Haibin Lü 1, 2, Zhiwu Chen 1, Junliang Liu 1, Jieshuo Xie 1, Jiexin Xu 1   

  1. 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2 University of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2015-01-04 Revised:2015-03-30 Online:2015-04-20 Published:2015-04-20

南海东北部受黑潮入侵、季风等动力因素的影响,背景剪切流场复杂,涡旋众多,水体垂向层结季节性变化明显,同时又因吕宋海峡的复杂底地形和强潮流的影响,内潮、内孤立波现象显著。但是,以往关于内潮、内孤立波的研究很少考虑到背景剪切流场和涡旋对其影响,因而难以揭示内波的生成、传播和演变规律。主要概述了南海东北部的剪切流、涡旋和内波等多种中尺度物理现象及其之间的相互作用的研究进展,进而提出未来关于南海东北部剪切流场对内波生成、传播和演变影响研究中的一些问题和研究思路。

The northeastern South China Sea (SCS) is affected by Kuroshio intrusion and monsoon, etc., the background shear currents are complicated, the eddies are active, and the seasonal variation of sea water vertical stratification is distinct, meanwhile, due to the effects of the complicated bottom topography in the Luzon Strait and strong tidal currents, the internal tides and internal solitary waves here are very active. However, in the previous studies on internal tides/solitary waves, few correlations with the background shear currents/eddies are considered. Therefore, it is difficult to reveal the generation, propagation and evolution rules of internal waves are difficult to be revealed. In this paper, we summarize the progress on the studies of meso-scale phenomena of shear currents, eddies and internal waves in the northeastern SCS and their interaction, and then propose some problems on future study of the effect of shear current field on the generation, propagation and evolution rules of internal waves in the northeastern South China Sea as well as the solution methods are proposed.

中图分类号: 

图1 黑潮入侵的不同类型 [ 14 ] 1(灰色)黑潮进入中国南海的平均位置;2a(粗实线)黑潮进入中国南海分支,之后沿陆架断层流向西南;2b(短虚线)黑潮在返回平均路径前形成的反气旋流套;2c(长虚线)从2b方式入侵后分离出来的反气旋涡;3(细实线)黑潮从菲律宾吕宋岛北部进入南海,在返回平均路径前形成气旋涡
Fig.1 chematic showing the different types of Kuroshio intrusions [ 14 ] Curve 1 (grey):The mean position of the Kuroshio as it partially enters the Luzon Strait. Curve 2a (thick, solid):The South China Sea Branch of the Kuroshio enters and flows southwestward along the shelf break; Curve 2b (short dashed):An anticyclonic loop current is formed by the Kuroshio before its returning to the mean path; Curve 2c (long dashed):An anticyclonic eddy detached from the type 2b intrusion; Curve 3 (thin, solid):The Kuroshio enters in the northern part of the strait and forms a cyclonic circulation before returning to the mean path
图2 多年遥感图片统计得到的自吕宋海峡至南海东北部内孤立波分布 [ 48 ]
Fig.2 Distribution of internal solitary waves in the northeastern South China Sea acquired from multi-year satellite images
[1] Mtfller P.On the diffusion of momentum and mass by internal gravity waves[J].Journal of Fluid Mechanics, 1976, 77(4): 789-823.
[2] Osborne A R, Burch T L.Internal solitons in the Andaman Sea[J]. Science, 1980, 208(4 443): 451-460.
[3] Ebbesmeyer C C, Coomes C A, Hamilton R C, et al. New observations on internal waves (solitons) in the South China Sea using an Acoustic Doppler Current Profiler[C]∥Marine Technology Society 91 Proceedings, 1991: 165-175.
[4] Hu J, Kawamura H, Hong H, et al.3~6 months variation of sea surface height in the South China Sea and its adjacent ocean[J]. Journal of Oceanography, 2001, 57(1): 69-78.
[5] Liu Q, Kaneko A, Su J.Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762.
[6] Chen G, Hou Y, Chu X.Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116:C06018,doi:10.1029/2010JC006716.
[7] Chow C H, Liu Q.Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophysical Research Letters, 2012, 39:L02601,doi:10.1029/2011GL050230.
[8] Cai S, Xie J, He J.An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927-943.
[9] Tian J, Yang Q, Zhao W. Enhanced diapycnal mixing in the South China Sea[J]. Journal of Physical Oceanography, 2009, 39(12): 3 191-3 203.
[10] Fang G, Wang Y, Wei Z, et al.Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1): 55-72.
[11] Qu T, Mitsudera H, Yamagata T.Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research: Oceans, 2000, 105(C3): 6 415-6 424.
[12] Centurioni L R, Niiler P P, Lee D K.Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait[J]. Journal of Physical Oceanography, 2004, 34(1): 113-121.
[13] Liang W D, Yang Y J, Tang T Y, et al.Kuroshio in the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8):C08048,doi:10.1029/2007JC004609.
[14] Caruso M J, Gawarkiewicz G G, Beardsley R C.Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559-575.
[15] Tian J, Yang Q, Liang X, et al.Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19),doi:10.1029/2006GL026272.
[16] Yuan Y, Liao G, Yang C, et al.Currents in Luzon Strait obtained from CTD and Argo observations and a diagnostic model in October 2008[J]. Atmosphere-Ocean, 2012, 50(Suppl.1): 27-39.
[17] Hwang C, Chen S A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 23 943-23 965.
[18] Wang G, Su J, Chu P C.Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21),doi:10.1029/2003GL018532.
[19] Nan F, Xue H, Xiu P, et al.Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research: Oceans, 2011, 116:C12045,doi:10.1029/2011JC007386.
[20] Lin Pengfei, Wang Fan, Chen Yongli, et al.Temporal and spatial variation characteristics on eddies in the South China SeaⅠ. Statistical analyses[J]. Acta Oceanologica Sinica, 2007, 29(3): 14-22.
[林鹏飞, 王凡, 陈永利,等. 南海中尺度涡的时空变化规律Ⅰ.统计特征分析[J]. 海洋学报, 2007, 29(3): 14-22.]
[21] Chu P C, Fan C, Lozano C J, et al.An airborne expendable bathythermograph survey of the South China Sea, May 1995[J]. Journal of Geophysical Research: Oceans, 1998, 103(C10): 21 637-21 652.
[22] Metzger E J.Upper ocean sensitivity to wind forcing in the South China Sea[J]. Journal of Oceanography, 2003, 59(6): 783-798.
[23] Yang H, Liu Q.Forced rossby wave in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(7): 917-926.
[24] Nof D, Jia Y, Chassignet E, et al.Fast wind-induced migration of Leddies in the South China Sea[J]. Journal of Physical Oceanography, 2011, 41(9): 1 683-1 693.
[25] Li L, Nowlin W D, Su J.Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1 469-1 482.
[26] Metzger E J, Hurlburt H E.The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1 712-1 732.
[27] Jia Y, Chassignet E P.Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait[J]. Journal of oceanography, 2011, 67(5): 601-611.
[28] Su J.Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1 745-1 760.
[29] Wang G, Chen D, Su J. Winter eddy genesis in the Eastern South China Sea due to orographic wind Jets[J]. Journal of Physical Oceanography,2008, 38(3):726-732.
[30] Guo Pu, Fang Wendong, Yu Hongbing.Progress in the observational studies of internal tide over continental shelf[J]. Advances in Earth Science, 2006, 21(6):617-624.
[郭朴,方文东,于红兵. 近海陆架区内潮观测研究进展[J]. 地球科学进展, 2006, 21(6):617-624.]
[31] Guo P, Fang W, Liu C, et al.Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117: C04023,doi:10.1029/2011JC007215.
[32] Xu Z, Yin B, Hou Y, et al.Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait[J]. Journal of Marine Systems, 2014, 134: 101-112.
[33] Xie X H, Chen G Y, Shang X D, et al.Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea[J]. Geophysical Research Letters, 2008, 35(13),doi:10.1029/2008GL034178.
[34] Xie X H, Shang X D, van Haren H, et al. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude[J]. Geophysical Research Letters, 2011, 38(5),doi:10.1029/2010GL046521.
[35] Xie X, Shang X, Haren H, et al.Observations of enhanced nonlinear instability in the surface reflection of internal tides[J]. Geophysical Research Letters, 2013, 40(8): 1 580-1 586.
[36] Duda T F, Lynch J F, Irish J D, et al.Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1 105-1 130.
[37] Zhang Z, Fringer O B, Ramp S R.Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05022,doi:10.1029/2010JC006424.
[38] Zhao Z, Klemas V, Zheng Q, et al.Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea[J]. Geophysical Research Letters, 2004, 31(6): L06302,doi:10.1029/2003GL019077.
[39] Guo C, Chen X, Vlasenko V, et al.Numerical investigation of internal solitary waves from the Luzon Strait: Generation process, mechanism and three-dimensional effects[J]. Ocean Modelling, 2011, 38: 203-216.
[40] Cai Shuqun, He Jianling, Xie Jieshuo.Recent decadal progress of the study on internal solitons in the South China Sea[J]. Advances in Earth Science, 2011,26(7):703-710.
[蔡树群,何建玲,谢皆烁.近十年来南海孤立内波的研究进展[J]. 地球科学进展,2011,26(7):703-710.]
[41] Fett R, Rabe K.Satellite observation of internal wave refraction in the South China Sea[J]. Geophysical Research Letters,1977, 4(5): 189-191.
[42] Liu A K, Chang Y S, Hsu M K, et al.Evolution of nonlinear internal waves in the East and South China Seas[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7 995-8 008.
[43] Hsu M K, Liu A K, Liu C.A study of internal waves in the China Seas and Yellow Sea using SAR[J]. Continental Shelf Research, 2000, 20(4): 389-410.
[44] Du T, Tseng Y H, Yan X H.Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08015,doi:10.1029/2007JC004294.
[45] Zheng Q, Susanto R D, Ho C R, et al.Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03021.
[46] Shaw P T, Ko D S, Chao S Y.Internal solitary waves induced by flow over a ridge: With applications to the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114, C02019,doi:10.1029/2008JC005007.
[47] Wang J, Huang W, Yang J, et al.Study of the propagation direction of the internal waves in the South China Sea using satellite images[J]. Acta Oceanologica Sinica, 2013, 32(5): 42-50.
[48] Farmer D, Li Q, Park J H.Internal wave observations in the South China Sea: The role of rotation and non-linearity[J]. Atmosphere-Ocean, 2009, 47: 267-280.
[49] Yang Y J, Tang T Y, Chang M H, et al.Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1 182-1 199.
[50] Klymak J M, Pinkel R, Liu C T, et al.Prototypical solitons in the South China Sea[J]. Geophysical Research Letters, 2006, 33(11),doi:10.1029/2006GL025932.
[51] Orr M H, Mignerey P C.Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3 064.
[52] Ramp S R, Tang T Y, Duda T F, et al.Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1 157-1 181.
[53] Huang X, Zhao W, Tian J, et al.Mooring observations of internal solitary waves in the deep basin west of Luzon Strait[J]. Acta Oceanologica Sinica, 2014, 33(3): 82-89.
[54] Yang Y J, Fang Y C, Chang M H, et al.Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10),doi:10.1029/2009JC005318.
[55] Chen Z W, Xie J, Wang D, et al. Density stratification influences on generation of different modes internal solitary waves[J]. Journal of Geophysical Research: Oceans, 2014, 119: 7 029-7 046.
[56] [56]Lynett P J, Liu P L F. A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry[J]. Wave Motion, 2002, 36(3): 221-240.
[57] Chao S Y, Shaw P T, Hsu M K, et al.Reflection and diffraction of internal solitary waves by a circular island[J]. Journal of Oceanography, 2006, 62(6): 811-823.
[58] Fan Z, Zhang Y, Song M.A study of SAR remote sensing of internal solitary waves in the north of the South China Sea:Ⅱ.Simulation of SAR signatures of internal solitary waves[J]. Acta Oceanologica Sinica, 2008, 27(5): 36-48.
[59] Cai S, Xie J.A propagation model for the internal solitary waves in the northern South China Sea[J]. Journal of Geophysical Research, 2010, 115: C12074,doi:10.1029/2010JC006341.
[60] Cai S, Long X, Gan Z.A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait[J]. Oceanologica Acta, 2002, 25(2): 51-60.
[61] Buijsman M C, Kanarska Y, McWilliams J C. On the generation and evolution of nonlinear internal waves in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2010, 115: C02012,doi:10.1029/2009JC005275.
[62] Vlasenko V, Stashchuk N, Guo C, et al.Multimodal structure of baroclinic tides in the South China Sea[J]. Nonlinear Processes in Geophysics, 2010, 17: 529-543.
[63] Buijsman M C, McWilliams J C, Jackson C R. East-west asymmetry in nonlinear internal waves from Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2010, 115: C10057,doi:10.1029/2009JC006004.
[64] Warn-Varnas A, Hawkins J, Lamb K G, et al. Solitary wave generation dynamics at Luzon Strait[J]. Ocean Modelling, 2010, 31: 9-27.
[65] Xie J, Chen Z, Xu J, et al.Effect of vertical stratification on characteristics and energy of nonlinear internal solitary waves from a numerical model[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10):3 539-3 555.
[66] Zheng Q A, Song Y T, Lin H.On generation source sites of internal waves in the Luzon Strait[J]. Acta Oceanologica Sinica, 2008, 27(3): 38-50.
[67] Guo C, Chen X.A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014, 121: 7-23.
[68] Cai S, Long X, Dong D, et al.Background current affects the internal wave structure of the northern South China Sea[J]. Progress in Natural Science, 2008, 18(5): 585-589.
[69] Jan S, Chern C S, Wang J, et al.Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2012, 117: C02019,doi:10.1029/2011JC007229.
[70] Li Q.Numerical assessment of factors affecting nonlinear internal waves in the South China Sea[J]. Progress in Oceanography, 2014, 121: 24-43.
[71] Park J H, Farmer D.Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 7 081-7 094.
[72] Ramp S R, Yang Y J, Reeder D B, et al.Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan[J]. Journal of Geophysical Research: Oceans, 2012, 117:C03043,doi:10.1029/2011JC007662.
[73] Krauss W.Internal tides resulting from the passage of surface tides through an eddy field[J]. Journal of Geophysical Research: Oceans, 1999, 104(C8): 18 323-18 331.
[74] Polzin K L.Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment[J]. Journal of Physical Oceanography, 2008, 38(11): 2 556-2 574.
[75] Polzin K L.Mesoscale eddy-internal wave coupling. Part II: Energetics and results from POLYMODE[J]. Journal of Physical Oceanography, 2010, 40(4): 789-801.
[76] Xu Q, Zheng Q, Lin H, et al.Dynamical analysis of mesoscale eddy-induced ocean internal waves using linear theories[J]. Acta Oceanologica Sinica, 2008, 27(3): 60-69.
[77] Liao G, Yang C, Xu X, et al.Effects of mesoscale eddies on the internal solitary wave propagation[J]. Acta Oceanologica Sinica, 2012, 31(5): 26-40.
[78] Wang Pinxian.Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5): 517-520.
[汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.]
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[3] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[4] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[5] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[6] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[7] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[8] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[9] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[10] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[11] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[12] 章鑫, 王丽, 杜学彬. 大地电流研究进展与展望[J]. 地球科学进展, 2016, 31(7): 708-717.
[13] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[14] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[15] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
阅读次数
全文


摘要