Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (2): 166-178    DOI: 10.11867/j.issn.1001-8166.2018.02.0166
综述与评述     
内孤立波悬浮海底沉积物研究进展
田壮才1,2(), 郭秀军1,3,*(), 余乐1, 贾永刚1,2,3, 张少同1,2, 乔路正4
1.山东省海洋环境地质工程重点实验室(中国海洋大学),山东 青岛 266100
2.青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室,山东 青岛 266061
3.海洋环境与生态教育部重点实验室,山东 青岛 266100
4.山东省城乡建设勘察设计研究院,山东 济南 250031
Review of the Seabed Sediment Resuspension by Internal Solitary Wave
Zhuangcai Tian1,2(), Xiujun Guo1,3,*(), Le Yu1, Yonggang Jia1,2,3, Shaotong Zhang1,2, Luzheng Qiao4
1.Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao Shandong 266100, China
2.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao Shandong 266061, China
3.Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao Shandong 266100, China
4.Shandong Province Urban and Rural Construction Investigation and Design Institute, Ji’nan 250031, China
 全文: PDF(9477 KB)   RICH HTML
摘要:

内孤立波是存在于层结海洋内部的非线性、大振幅波动,其强劲的垂向和水平运动以及破碎导致的涡旋和湍流作用,对海洋环境、海底沉积物和海洋工程产生重要的影响。围绕内孤立波作用下沉积物再悬浮的发生过程,对前人开展的大量研究工作及取得的研究成果进行了系统分析与总结,从内孤立波向岸传播的破碎机制、悬浮沉积物模式以及引起的海床动力响应进行评述,并分析内孤立波悬浮沉积物判定理论和对海底的作用,对目前研究工作中尚未解决的问题进行总结。该工作对于系统深入认识内孤立波引起的海底沉积物再悬浮发生过程,以及对海底底形的改造能力具有重要价值,为进一步研究内孤立波对海洋生态环境动力过程及深海沉积过程提供借鉴。

关键词: 内孤立波破碎机制沉积物动力响应再悬浮    
Abstract:

Internal Solitary Waves (ISWs) are nonlinear, large amplitude motions of the interface between two fluids with different densities in the stratified ocean. Because of their strong vertical and horizontal current velocity, and the vortex, turbulent mixing caused by breaking, they affect marine environment, seabed sediment and man-made structures in the ocean. In the paper, we systematically analyzed and summarized the ISW-induced shoaling break mechanisms, models of suspension, and seabed dynamical response. Then, we discussed the ISW-induced sediment resuspension criteria, forming bottom and intermediate nepheloid layer and the capacity to suspend sediments in the seabed, and further put forward the unsolved problems based on the conducted work and related achievements. In shallow seas with complex terrain variations, shoaling can cause ISWs to deform, break, and split. Studies on the propagation of ISWs of depression over sloping topography have shown that an adverse pressure gradient causes the rotation of the flow separation, which produces vortices, and this results in global instability of the boundary layer and ISW burst. The separation vortices increase the bottom shear stress, vertical velocity, and near-bottom Reynolds stress, which leads to sediment resuspension and transport in the flow and vortex core. Although episodic, ISW-induced resuspension is hypothesized to be important enough to shape the topography. Shoaling ISWs may erode, resuspend and transport mud-like sediments, first towards shore by boluses, and subsequently offshore through the generation of intermediate nepheloid layers. Shoaling ISWs might be an important mechanism of muddy sediment dispersal along continental shelves. Furthermore, recent hypotheses suggest that sediment mobilization and transport caused by internal waves in general, and ISWs in particular, may be at the origin of some sedimentary structures found in the sedimentary rock record and also the hummocky-cross stratification. Observed on-shelf propagating frontal ISW most likely interacts with the sand waves, sediment waves or sand dunes. ISWs contribute to their generation, as they are trailed by considerable shear-induced turbulence and high-frequency internal waves close to the buoyancy frequency. This work is of great value for further understanding the process of ISW-induced sediment resuspension, transportation, and the capacity to suspend sediments in the seabed. It helps further study of the dynamic process of marine ecological environment dynamic process by ISW and the deep sea sedimentation process.

Key words: Internal solitary waves    Shoaling break    Sediment    Dynamical response    Resuspension.
收稿日期: 2017-10-08 出版日期: 2018-04-02
ZTFLH:  P751  
基金资助: 国家自然科学基金重大科研仪器研制项目“复杂深海工程地质原位长期观测设备研制”(编号:41427803);国家自然科学基金项目“近海浅层气电阻率成像法探测技术研究”(编号:41772307)资助
通信作者: 郭秀军     E-mail: zhuangcaitian@163.com;guojunqd@ouc.edu.cn
作者简介:

作者简介:田壮才(1991-),男,博士研究生,河南商丘人,主要从事海洋地质与环境岩土工程研究.E-mail:zhuangcaitian@163.com

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田壮才
郭秀军
余乐
贾永刚
张少同
乔路正

引用本文:

田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.

Zhuangcai Tian, Xiujun Guo, Le Yu, Yonggang Jia, Shaotong Zhang, Luzheng Qiao. Review of the Seabed Sediment Resuspension by Internal Solitary Wave. Advances in Earth Science, 2018, 33(2): 166-178.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.02.0166        http://www.adearth.ac.cn/CN/Y2018/V33/I2/166

图1  世界范围内孤立波分布图[3]
图2  南海北部陆坡观测到内孤立波悬浮海底沉积物形成200 m厚的雾状层[25]
图3  南海内孤立波传播路径[23]
图4  内孤立波破碎过程示意图(a)对流不稳定[43];(b)剪切不稳定[46]
图5  涡应力和湍流破裂示意图[56]
图6  沿斜坡的水流和涡旋共同悬浮沉积物示意图[35]
图7  涡流环示意图[20]
图8  表面波、内波的双层流体系统与海床互相作用示意图[64]
图9  双层流体内孤立波与海床互相作用示意图[68]
图10  内孤立波破碎过程沉积物颗粒受力示意图
图11  内孤立波悬浮沉积物的输运趋势[35,55]
图12  南海北部内孤立波、沙丘和海底冲蚀沟分布区[25,88,95]
[1] Apel J R, Ostrovsky L A, Stepanyants Y A.Internal solitons in the ocean[J]. Journal of the Acoustical Society of America, 2006, 98(5):2 863-2 864.
[2] Yu Bo, Huang Xiaodong, Dong Jihai, et al.Observation of a trapped core internal solitary wave in South China Sea[J]. Periadical of China University of China, 2016, 46(3):1-7.[于博, 黄晓冬, 董济海, 等. 南海陆坡区约束流核型内孤立波观测研究[J]. 中国海洋大学学报:自然科学版, 2016, 46(3):1-7.]
[3] Jackson C.Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS)[J]. Journal of Geophysical Research Oceans, 2007, 112(C11):60-64.
[4] Johnson D R, Weidemann A, Pegau W S.Internal tidal bores and bottom nepheloid layers[J]. Continental Shelf Research, 2001, 21(13/14):1 473-1 484.
[5] Fang Xinhua.Ocean Internal Wave Foundation and Chinese Sea Internal Wave[M]. Qingdao: China Ocean University Press, 2005.[方欣华. 海洋内波基础和中国海内波[M]. 青岛:中国海洋大学出版社, 2005.]
[6] Wang Hui, Wan Liying, Qin Yinghao, et al.Development and application of the Chinese global operational oceanography forecasting system[J]. Advances in Earth Science, 2016, 31(10):1 090-1 104.[王辉, 万莉颖, 秦英豪,等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10):1 090-1 104.]
[7] Southard J B, Cacchione D A.Experiments on bottom sediment movement by breaking internal waves[M]∥Swift D J P, Duane B B, Pilkey O H, eds. Pilkey Shelf Sediment Transport: Process and Pattern. Stroudsburg, PN:Dowden, Hutchinson and Ross,1972: 83-97.
[8] Cacchione D A, Drake D E.Nepheloid layers and internal waves over continental shelves and slopes[J]. Geo-Marine Letters, 1986,6(3): 147-152.
[9] Lamb K G.Particle transport by nonbreaking solitary internal waves[J]. Journal of Geophysical Research, 1997, 102(C8):18 641-18 660.
[10] Ribbe J, Holloway P E.A model of suspended sediment transport by internal tides[J]. Continental Shelf Research, 2001, 21(4):395-422.
[11] Bogucki D J, Redekopp L G.A mechanism for sediment resuspension by internal solitary waves[J]. Geophysical Research Letters, 1999, 26(9): 1 317-1 320.
[12] Wang B, Bogucki D, Redekopp L.Internal solitary waves in a structured thermocline with implications for resuspension and the formation of thin particleladen layers[J]. Journal of Geophysical Researchm,2001,106(C5): 9 565-9 585.
[13] Cacchione D, Wunsch C.Experimental study of internal waves over a slope[J]. Journal of Fluid Mechanics, 1974, 66(2):223-239.
[14] De Silva P D, Imberger J, Ivey G N. Localized mixing due to a breaking internal wave ray at a sloping bottom[J]. Journal of Fluid Mechanics, 1997, 350: 1-27.
[15] Helfrich K R.Internal solitary wave breaking and run-up on a uniform slope[J]. Journal of Fluid Mechanics, 1992, 243: 133-154.
[16] Kneller B C, Bennett S J, McCaffrey W D. Velocity and turbulence structure of density currents and internal solitary waves: Potential sediment transport and the formation of wave ripples in deep water[J]. Sedimentary Geology, 1997,112(3/4): 235-250.
[17] McPhee-Shaw E E, Kunze E. Boundary layer intrusions from a sloping bottom:A mechanism for generating intermediate nepheloid layers[J]. Journal of Geophysical Research, 2002, 107(C6): 3 050.
[18] Bogucki D J, Redekopp L G, Barth J.Internal solitary waves in the coastal mixing and optics 1996 experiment:Multimodal structure and resuspension[J]. Journal of Geophysical Research, 2005,110(C2). DOI: 10.1029/2003JC002253.
[19] Quaresma L S, Vitorino J, Oliveira A, et al.Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf[J]. Marine Geology, 2007, 246(2):123-143.
[20] Masunaga E, Homma H, Yamazaki H, et al.Mixing and sediment resuspension associated with internal bores in a shallow bay[J]. Continental Shelf Research, 2015, 110: 85-99.
[21] Chen C Y, Hsu J, Chen H H, et al.Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes[J]. Ocean Engineering, 2007, 34(1):157-170.
[22] Klymak J M, Moum J N.Internal solitary waves of elevation advancing on a shoaling shelf[J]. Geophysical Research Letters, 2003, 30(20): 2 045.
[23] Bogucki D, Dickey T, Redekopp L G.Sediment resuspension and mixing by resonantly generated internal solitary waves[J]. Journal of Physical Oceanography, 1997, 27(7): 1 181-1 196.
[24] Proni J R, Apel J R.On the use of high-frequency acoustics for the study of internal waves and microstructure[J]. Journal of Geophysical Research, 1975, 80: 1 147-1 151.
[25] Reeder D B, Ma B B, Yang Y J.Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves[J]. Marine Geology, 2011, 279(1): 12-18.
[26] Alford M H, Peacock T, Mackinnon J A, et al.Corrigendum: The formation and fate of internal waves in the South China Sea[J]. Nature International Weekly Journal of Science, 2015, 521(7 580): 65-69.
[27] Cai Shuqun, He Jianling, Xie Jieshuo.Recent decadal progress of the study on internal solitons in the South China Sea[J]. Advances in Earth Science, 2011, 26(7):703-710.[蔡树群, 何建玲, 谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7):703-710.]
[28] Ramp S R, Tang T Y, Duda T F, et al.Internal solitons in the northeastern South China Sea, Part I: Sources and deep water propagation[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1 157-1 181.
[29] Zhuo Haiteng, Wang Yingmin, Xu Qiang, et al.Classification and genesis of continental slopes on the northern South China Sea[J]. Acta Geologica Sinica, 2014, 88(3): 327-336.[卓海腾, 王英民, 徐强, 等. 南海北部陆坡分类及成因分析[J]. 地质学报, 2014, 88(3): 327-336.]
[30] Luan Xiwu,Sun Dianqi,Peng Xuechao.Genesis of the Nanbeiwei Shoal on the shelf of the Northern South China Sea and its petroliferous significance[J]. Acta Geologica Sinica, 2012, 86(4):626-640.[栾锡武, 孙钿奇, 彭学超. 南海北部陆架南北卫浅滩的成因及油气地质意义[J]. 地质学报, 2012, 86(4): 626-640.]
[31] Laurent L S, Simmons H, Tang T Y, et al.Turbulent properties of internal waves in the South China Sea[J]. Oceanography, 2011, 24(4):78-87.
[32] Yang Y J, Tang T Y, Chang M H, et al.Solitons northeast of Tung-Sha Isl and during the ASIAEX pilot studies[J]. IEEE Journal of Oceanic Engineering, 2004,29(4):1 182-1 199.
[33] Du Hui, Wei Gang, Zeng Wenhua, et al.Breaking and energy analysis of internal solitary wave over a gentle slope[J]. Ocean Science, 2014, 38(10): 98-104.[杜辉, 魏岗, 曾文华,等. 缓坡地形上内孤立波的破碎及能量分析[J]. 海洋科学, 2014, 38(10):98-104.]
[34] Tian Z, Guo X, Qiao L, et al.Experimental investigation of slope sediment resuspension characteristics and influencing factors beneath the internal solitary wave-breaking process[J]. Bulletin of Engineering Geology & the Environment, 2017,(5):1-9.
[35] Bourgault D, Morsilli M, Richards C, et al.Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes[J]. Continental Shelf Research, 2014, 72(1):21-33.
[36] Aghsaee P, Boegman L.Experimental investigation of sediment resuspension beneath internal solitary waves of depression[J]. Journal of Geophysical Research Oceans, 2015, 120(5):3 301-3 314.
[37] Hsu M K, Liu A K, Liu C.A study of internal waves in the China Seas and Yellow Sea using SAR[J]. Continental Shelf Research, 2000, 20(4/5):389-410.
[38] Lien R C, Tang T Y, Chang M H, et al.Energy of nonlinear internal waves in the South China Sea[J]. Geophysical Research Letters, 2005, 32(5):215-236.
[39] Liu A K, Chang Y S, Hsu M K, et al.Evolution of nonlinear internal waves in the East and South China Seas[J]. Journal of Geophysical Research Oceans, 1998, 103(C4):7 995-8 008.
[40] Li Bingrui, Fan Haimei, Tian Jiwei, et al.Evolution and breaking of apropagating internal wave instratified ocean[J]. Acta Oceanologica Sinica, 2008, 27(1):13-22.
[41] Liang Jianjun, Du Tao.Progress of the studies on ocean internal wave breaking[J]. Marine Forecasts, 2012, 29(6):22-29.[梁建军, 杜涛. 海洋内波破碎问题的研究[J]. 海洋预报, 2012, 29(6):22-29.]
[42] Liu Guotao, Shang Xiaodong, Chen Guiying, et al.The advance of internal IW aves breaking and energy dissipation in the ocean[J]. Acta Scientiarum Naturalium Universities Sunyatseni, 2007, 46(Suppl.2):167-172.[刘国涛, 尚晓东, 陈桂英,等. 海洋内波破碎及其能量耗散的研究进展[J]. 中山大学学报:自然科学版, 2007, 46(增刊2):167-172.]
[43] Vlasenko V, Hutter K.Numerical experiments on the breaking of solitary internal waves over a slope shelf topography[J]. Journal of Physical Oceanography, 2002, 32(6):1 779-1 793.
[44] Legg S, Adcroft A.Internal wave breaking at concave and convex slopes[C]∥EGS-AGU-EUG Joint Assembly. EGS-AGU-EUG Joint Assembly, 2003.
[45] Saffarinia K, Kao T W.Numerical study of the breaking of an internal soliton and its interaction with a slope[J]. Dynamics of Atmospheres & Oceans, 1996, 23(1/2/3/4):379-391.
[46] Bouruet-Aubertot P, Thorpe S A.Numerical experiments on internal gravity waves in an accelerating shear flow[J]. Dynamics of Atmospheres & Oceans, 1999, 29(1):41-63.
[47] Barad M F, Fringer O B.Simulations of shear instabilities in interfacial gravity waves[J]. Journal of Fluid Mechanics, 2010, 644:61-95.
[48] Duda T F, Lynch J F,Irish J D, et al.Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea[J].IEEE Journal of Ocean Engineering,2004,29(4):1 105-1 130.
[49] Fructus D, Carr M, Grue J, et al.Shear-induced breaking of large internal solitary waves[J]. Journal of Fluid Mechanics, 2009, 620:1-29.
[50] Aghsaee P, Boegman L, Diamessis P J, et al.Boundary layer separation driven vortex shedding beneath internal solitary waves of depression[J]. Journal of Fluid Mechanics, 2012, 690(1):321-344.
[51] Carr M, Davies P A, Shivaram P.Experimental evidence of internal solitary wave-induced global instability in shallow water benthic boundary layers[J]. Physics of Fluids, 2008, 20(6):784-30.
[52] Stastna M, Lamb K G.Large fully nonlinear internal solitary waves: The effect of background current[J]. Physics of Fluids, 2002, 14:2 987-2 999.
[53] Stastna M, Lamb K G.Sediment resuspension mechanisms associated with internal waves in coastal waters[J]. Journal of Geophysical Research, 2008, 113(C10):193-199.
[54] Diamessis P J, Redekopp L G.Numerical investigation of solitary internal wave-induced global instability in Shallow Water Benthic boundary layers[J]. Journal of Physical Oceanography, 2004, 36(5):784-812.
[55] Hosegood P, Haren H V.Near-bed solibores over the continental slope in the Faeroe-Shetland Channel[J]. Deep-Sea Research Part II, 2004, 51(25):2 943-2 971.
[56] Boegman L, Ivey G N.Flow separation and resuspension beneath shoaling nonlinear internal waves[J]. Journal of Geophysical Research, 2009, 114(C2):309-321.
[57] Venayagamoorthy S K, Fringer O B.Numerical simulations of the interaction of internal waves with a shelf break[J]. Physics of Fluids, 2006, 18(7).DOI:10.1063/1.2221863.
[58] Diamessis P J, Jacobs G B.Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves[R]. Cornell University Ithaca NY, 2015.
[59] Zhang Shaotong, Jia Yonggang, Wang Zhenhao, et al.Wave flume experiments on the contribution of seabed fluidization to sediment re-suspension[J]. Acta Oceanologica Sinica, 2017, 10(7): 1-7.
[60] Zhang Y.Verticalmigration of fine-grained sediments from interior to surface of seabed driven by seepage flows-‘sub-bottom sediment pump action’[J]. Journal of Ocean University of China, 2017, 16(1):15-24.
[61] Wang Dong.Numerieal Analysis for Dynamic Response and Liquefaction Potential of Seabed under Wave Loading[D]. Dalian:Dalian University of Technology, 2002.[王栋. 波浪作用下海床动力响应与液化的数值分析[D].大连:大连理工大学,2002.]
[62] Wang Hu, Liu Hongjun, Wang Xiuhai.Mechanism of seabed scour and its critical condition estimation by considering seepage forces[J]. Advances in Water Science, 2014, 25(1):115-121.[王虎, 刘红军, 王秀海. 考虑渗流力的海床临界冲刷机理及计算方法[J]. 水科学进展, 2014, 25(1):115-121.]
[63] Jianhong Y, Dongsheng J, Liu P.Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation[J]. Coastal Engineering, 2014, 85(1):72-86.
[64] Chen C Y, Hsu J R C. Interaction between internal waves and a permeable seabed[J]. Ocean Engineering, 2005, 32(5): 587-621.
[65] Williams S J, Jeng D S.The effects of a porous-elastic seabed on interfacial wave propagation[J]. Ocean Engineering, 2007, 34(13): 1 818-1 831.
[66] Williams S J, Jeng D S.Viscous attenuation of interfacial waves over a Porous Seabed[J]. Journal of Coastal Research, 2007, 23(1):338-342.
[67] Rivera-Rosario G A, Diamessis P J, Jenkins J T. Bed failure induced by internal solitary waves[J]. Journal of Geophysical Research Oceans, 2017, 122: 5 468-5 485.
[68] Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al.Analysis oninternal solitary wave-induced dynamic response characteristics of surface sediments in the Northern South China Sea[J]. Chinese Journal of Underground Space and Engineering, 2016,(Suppl.2):604-611.[乔路正, 郭秀军, 田壮才,等. 内孤立波作用下南海北部陆坡沉积物动力响应特征分析[J]. 地下空间与工程学报, 2016,(增刊2):604-611.]
[69] Qiao Luzheng.Analysis of Internal Solitary Wave-induced Dynamic Response Characteristics of Surface Sediments in the Northern South China Sea[D]. Qingdao: Ocean University of China, 2016.[乔路正. 内孤立波作用下南海北部陆坡浅表沉积物动力响应特征分析[D]. 青岛:中国海洋大学, 2016.]
[70] Shields A, Ott W P, Uchelen J C V. Application of Similarity Principles and Turbulence Research to Bed-load Movement[M]. Caliornia: California Institute of Technology, 1936.
[71] Dyer K R.Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley & Sons Inc., 1986.
[72] Soulsby R L, Whitehouse R J S W, Soulsby R L, et al. Threshold of Sediment Motion in Coastal Environments[C]∥Pacific Coasts and Ports 1997 Conference. 1997:149-154.
[73] Taki K.Critical shear stress for cohesive sediment transport[J]. Proceedings in Marine Science, 2000, 3(6):53-61.
[74] Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
[75] Tian Zhuangcai.Experimental Analysis on Characteristics of Sediment Resuspension, Transport and Sedimentation in the Process of Internal Solitary Wave Shoaling Breaking[D]. Qingdao: Ocean University of China, 2017.[田壮才. 内孤立波浅水破碎过程坡面沉积物悬浮、输运及沉积特征实验分析[D]. 青岛:中国海洋大学, 2017.]
[76] Soontiens N, Stastna M, Waite M L.Topographically generated internal waves and boundary layer instabilities[J]. Physics of Fluids, 2015, 27(8):1 181-1 196.
[77] Azetsu-Scott K, Johnson B D, Petrie B.An intermittent, intermediate nepheloid layer in Emerald Basin, Scotian Shelf[J]. Continental Shelf Research, 1995, 15(2/3):281-293.
[78] Mccave I N.Local and global aspects of the bottom nepheloid layers in the world ocean[J]. Netherlands Journal of Sea Research, 1986, 20(2/3):167-181.
[79] Lien R C, Henyey F, Ma B, et al.Large-amplitude internal solitary waves observed in the Northern South China Sea: Properties and energetics[J]. Journal of Physical Oceanography, 2014, 44(4): 1 095-1 115.
[80] Cacchione D A, Pratson L F, Ogston A S.The shaping of continental slopes by internal tides[J]. Science,2002, 296(5 568):724-727.
[81] Puig P, Palanques A, Guillén J, et al.Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: Implications for continental margin shaping[J]. Journal of Geophysical Research Oceans,2004, 109(C9). DOI: 10.1029/2004JC002394.
[82] Puig P, Ogston A S, Guillén J, et al.Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea)[J]. Continental Shelf Research,2007, 27(3/4):452-474.
[83] Rib M, Puig P, Mu?oz A, et al.Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)[J]. Geomorphology,2016, 253:22-37.
[84] Ribó M, Puig P, Urgeles R, et al.Spatio-temporal evolution of sediment waves developed on the Gulf of Valencia margin (NW Mediterranean) during the Plio-Quaternary[J]. Marine Geology,2016, 378:276-291.
[85] Droghei R, Falcini F, Martorelli E, et al.The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait[C]∥EGU General Assembly,2016.
[86] van Haren H, Puig P. Internal wave turbulence in the Llobregat prodelta (NW Mediterranean) under stratified conditions: A mechanism for sediment waves generation?[J]. Marine Geology, 2017, 388:1-11.
[87] Xia Huayong,Liu Yuqiang,Yang Yang.Internal-wave characteristics of strong bottom currents at the sand-wave zone of the northern South China Sea and its role in sand-wave motion[J]. Journal of Tropical Oceanography,2009, 28(6):15-22.[夏华永,刘愉强,杨阳. 南海北部沙波区海底强流的内波特征及其对沙波运动的影响[J]. 热带海洋学报,2009, 28(6):15-22.]
[88] Geng Minghui, Song Haibin, Guan Yongxian, et al.The distribution and characteristics of very large subaqueous and dunes in the Dongsha region of the northern South China Sea[J]. Chinese Journal of Geophysics,2017, 60(2):628-638.[耿明会, 宋海斌, 关永贤,等. 南海北部东沙海域巨型水下沙丘的分布及特征[J].地球物理学报, 2017, 60(2):628-638.]
[89] Gao Zhenzhong, He Youbin, Zhang Xingyang, et al.Internal-wave and internal-tide deposits of the Middle-Upper Ordovician in the Center Tarim Basin[J]. Acta Sedimentologica Sinica,2000, 18(3): 400-407.[高振中, 何幼斌,张兴阳,等. 塔中地区中晚奥陶世内波, 内潮汐沉积[J]. 沉积学报, 2000, 18(3): 400-407.]
[90] Zhang Xingyang, He Youbin, Luo Shunshe, et al.Deep-water sediment waves formed by internal waves[J]. Acta Geography, 2002,4(1): 83-89.[张兴阳, 何幼斌, 罗顺社,等. 内波单独作用形成的深水沉积物波[J]. 古地理学报, 2002, 4(1):83-89.]
[91] Chen Shanshan, Sun Yunbao, Wu Shiguo.Sea bottom landslide in the SHENHU area on the north margin of south China sea and triggering mechanisms[J]. Marine Geology Frontiers,2012, 28(6): 40-45.[陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6): 40-45.]
[92] Ma Yun, Li Sanzhong, Xia Zhen, et al.Characteristics of hazardous geological factors on Shenhu continental slope in the northern South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2014,39(9): 1 364-1 372.[马云, 李三忠, 夏真,等. 南海北部神狐陆坡区灾害地质因素特征[J]. 地球科学——中国地质大学学报, 2014,39(9): 1 364-1 372.]
[93] Sun Yunbao.The Mechanism and Prediction of Deepwater Geohazard in the northern of South China Sea[D].Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.[孙运宝. 南海北部陆坡深水区地质灾害机理与钻前预测[D].青岛:中国科学院海洋研究所, 2011.]
[94] Zhang Bingkun, Li Sanzhong, Xia Zhen, et al.Distribution of Cenozoic igneous rocks and its relation to submarine geological hazards in the deepwater area of the northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 36(11): 90-100.[张丙坤, 李三忠, 夏真,等. 南海北部深水区新生代岩浆岩分布规律及其与海底地质灾害的相关性[J]. 海洋学报, 2014, 36(11): 90-100.]
[95] Luan Xiwu, Zhang Liang, Peng Xuechao.Dongsha erosive channel on northern South China Sea Shelf and its induced Kuroshio South China Sea Branch[J]. Science in China(Series D), 2011,41(11):1 636-1 646.[栾锡武, 张亮, 彭学超. 南海北部东沙海底冲蚀河谷及其成因探讨[J]. 中国科学:D辑, 2011,41(11):1 636-1 646.]
[96] Fu K H, Wang Y H, Laurent L S, et al.Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea[J]. Continental Shelf Research, 2012, 37(37):1-7.
[97] Cai S, Long X, Gan Z.A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait[J]. Oceanologica Acta, 2002, 25(2):51-60.
[98] Klymak J M, Legg S, Alford M H, et al.The direct breaking of Internal Waves at Steep Topography[J]. Oceanography, 2012, 25(2):150-159.
[99] Tian Zhuangcai, Guo Xiujun, Qiao Luzheng, et al.Analysis of spatial distribution characteristics of seabed sediments critical starting velocity in the northern South China Sea[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(A02): 4 287-4 294.[田壮才, 郭秀军, 乔路正,等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报, 2016,35(A02): 4 287-4 294.]
[100] Zhao Z, Klemas V, Zheng Q, et al.Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea[J]. Geophysical Research Letters,2004, 31(6):177-182.
[101] Xie J, He Y, Lü H, et al.Distortion and broadening of internal solitary wave front in the northeastern South China Sea deep basin[J]. Geophysical Research Letters, 2016,43(14): 7 617-7 624.
[1] 范成新,刘敏,王圣瑞,方红卫,夏星辉,曹文志,丁士明,侯立军,王沛芳,陈敬安,游静,王菊英,盛彦清,朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[2] 顾菊,张勇,刘时银,王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[6] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[7] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[8] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[9] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[10] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[11] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[12] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[13] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[14] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[15] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.