Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (7): 763-772    DOI: 10.11867/j.issn.1001-8166.2021.070
水生关键带有机碳循环过程:从分子水平到全球尺度     
海域沉积物蠕动地貌的研究现状与展望
吴晓川1,2(),欧阳黎明1,2,郭晓中1,2,黄焱羚1,2,黄振华1,2,李伟3
1.页岩气勘探开发国家地方联合工程研究中心,重庆地质矿产研究院,重庆 401120
2.自然资源部 页岩气资源勘查重点实验室,重庆地质矿产研究院,重庆 401120
3.边缘海与大洋 地质重点实验室,中国科学院南海海洋研究所,广东 广州 510301
Review and Prospect of the Geomorphology of Sediment Creep in Sea Areas
Xiaochuan WU1,2(),Liming OUYANG1,2,Xiaozhong GUO1,2,Yanling HUANG1,2,Zhenhua Huang1,2,Wei Li3
1.National Joint Local Engineering Research Center for Shale Gas Exploration and Development,Chongqing Institute of Geology and Mineral Resources,Chongqing 401120,China
2.Key Laboratory of Shale Gas Exploration,Ministry of Natural Resources,Chongqing Institute of Geology and Mineral Resources,Chongqing 401120,China
3.Key Laboratory of Marginal Sea Geology,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China
 全文: PDF(5747 KB)   RICH HTML
摘要:

沉积物蠕动是海底地层倾于发生破坏的前奏和指示,能够演变为大规模的海底滑坡,给海洋工程建设和人类生命安全带来巨大的威胁。目前发现的沉积物蠕动地貌主要发育在北半球,表现为槽脊相间的海底起伏。沉积物蠕动地貌的主要识别标志为槽脊形态的无规律变化与走向沿水深线延伸且槽脊内部发育剪切面等。地震活动、构造抬升、高沉积速率和地层压力、地层的含气性与水合物分解等均可导致沉积物蠕动地貌的形成。然而,在前人的研究过程中发现了诸多疑似沉积物蠕动地貌的起伏地形,证明或证伪这些起伏地形是否为沉积物蠕动地貌是目前研究的侧重点。沉积物蠕动的滑移变形速率、蠕动地层底界面及其与下伏构造的关系性、沉积物蠕动的形成过程和演变趋势等研究工作有助于进一步厘定沉积物蠕动地貌及其致灾等级,但这些工作还鲜有涉及。因此,后续沉积物蠕动地貌的研究应加强沉积物蠕动层底界面的刻画与表征,重视沉积物蠕动形成过程和演变趋势的数值模拟和物理模拟研究,为深入识别沉积物蠕动和评价其灾害等级提供重要的依据。

关键词: 沉积物蠕动海底起伏蠕动底界面先存构造分离错动    
Abstract:

Sediment creep as the precursor and indicator of the destruction of the submarine stratum, which can evolve into a large-scale submarine landslide, poses a huge threat to marine engineering construction and human life safety. Sediment creep morphology is mainly found to develop in the northern hemisphere through literature sorting, which is manifested by seafloor undulations composed of troughs and ridges. The main identification marks of sediment creep morphology are irregular changes in the morphology of troughs and ridges and their strikes extend along the water depth line and shear planes offset the troughs and ridges. Seismic activity, structural uplift, high deposition rate and formation pressure, gas-bearing formation and hydrate decomposition, etc., can all lead to the occurrence of sediment creep. However, many seafloor undulations suspected of sediment creep have been discovered in the process of previous research. The majority current research focuses on how to prove or falsify if these seafloor undulations are sediment creep. The slip deformation rate and the bottom interface of creep and its relationship with the underlying structure, the study of the formation process and evolution trend of sediment creep, etc., help to further determine the sediment creep, but its disaster evaluation work is rarely involved. Therefore, subsequent studies on sediment creep should strengthen the delineation and characterization of the bottom interface of sediment creep, and pay attention to the numerical and physical simulation studies of the formation process and evolution trend of sediment creep, which could contribute to the deep understanding of sediment creep and provide important information for evaluation of its disaster level.

Key words: Sediment creep    Seafloor undulations    Bottom interface of sediment creep    Pre-existing structures    Separation and offset
收稿日期: 2021-01-27 出版日期: 2021-08-20
ZTFLH:  P737.2  
基金资助: 中国科学院边缘海与大洋地质重点实验室开放基金项目“东沙群岛周缘海底蠕变褶皱的位态及不稳定性分析”(OMG2019-08);国家自然科学基金面上项目“南海北部珠江口盆地海底蠕变区的形成机理及不稳定性研究”(41876054)
作者简介: 吴晓川(1991-),男,重庆人,工程师,主要从事地震地质研究. E-mail:hsiaochuanwu@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴晓川
欧阳黎明
郭晓中
黄焱羚
黄振华
李伟

引用本文:

吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.

Xiaochuan WU,Liming OUYANG,Xiaozhong GUO,Yanling HUANG,Zhenhua Huang,Wei Li. Review and Prospect of the Geomorphology of Sediment Creep in Sea Areas. Advances in Earth Science, 2021, 36(7): 763-772.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.070        http://www.adearth.ac.cn/CN/Y2021/V36/I7/763

图1  海域沉积物蠕动区的分布(a)以及蠕动地貌 (b)蠕动区位置据参考文献[5~32]绘制
图2  世界范围内典型的沉积物蠕动地震剖面(据参考文献[12,14,18,22,26,31]修改)(a)~(c)阿基坦陆缘处;(d)意大利海域;(e)和(f)里海地区;(g)北极海域;(h)和(i)南海珠江峡谷区沉积物蠕动剖面
位置沉积物蠕动槽脊的形态特征参考文献
日本海槽与生长正断层有位置关联性、脊幅度朝下斜坡方向增大,槽脊分布规律24
波弗特海槽脊地层内部发育同沉积正断层且发生构造负反转25
阿基坦陆缘槽脊地层内部发育小型铲式断层、槽充填加厚22
阿尔沃兰海脊尖锐、发育向陆倾的上斜坡翼和向海倾的下斜坡翼、头部无断层、槽平行于水深线延伸23
里海宽脊和窄槽、脊的顶部较为平坦、槽脊形态无规律变化18
马尔马拉海脊下斜坡翼坡度达40°、脊幅度随水深增加而增大、内部断面倾角大(30°~40°)、槽平行于水深线延伸5
南海神狐海域槽脊变化规律不明显,分布在峡谷头部或峡谷脊上12
槽线和脊线近平行于水深线且垂直于峡谷轴线、槽脊无变化规律13
槽周缘见铲式正断层、脊上斜坡翼比下斜坡翼厚度大14
南海东沙海域发育内部断层、无迁移特征、两翼等厚、形态上无变化规律、槽无平面上的分叉与合并、槽亚平行于等深线15
表1  已研究的沉积物蠕动的分布与特征
位置槽脊地层的特征参考文献
西太平洋脊间转折处下宽上窄、反射连续且向陆迁移、脊上斜坡翼比下斜坡翼厚、与古海底的粗糙度有关2
地中海反射连续、无剪切破裂特征、无与蠕动递进变形相关的生长构造、平面上槽出现分叉与合并6
阿尔沃兰海反射连续且向陆迁移、脊幅度向陆增大、槽平行于等深线延伸、岩心分析为粗粒沉积35
亚得里亚海脊上斜坡翼平缓而下斜坡翼陡、槽脊无规律变化、槽脊与底部泥质起伏混杂伴生3
脊上斜坡翼振幅比下斜坡翼振幅强、脊间分隔面的坡度小(4°~5°),不符合剪切破裂准则36
塔兰托海湾槽脊平行于等深线延伸、无迁移特征、槽脊无明显规律变化、无侵蚀特征、海底与下伏地层起伏形态相似37
表2  一些疑似沉积物蠕动的槽脊特征
图3  由沉积物蠕动和沉积作用共同形成的海底起伏(据参考文献[37]修改)(a)混合成因的海底起伏平面图;(b)混合成因的海底起伏地震剖面图
图4  地震剖面槽脊分界面的视倾角与真倾角的比较(据参考文献[36]修改)
图5  槽脊与下伏构造以及先存断裂分离错动的地质图示(a)槽脊与下伏断裂的地质图示;(b)槽脊与下伏滑坡台阶的地质图示;(c)滑移引起的断裂分离错动的地质图示
图6  含气地层蠕动变形的数值模拟图示(a)地层含气模型;(b)蠕动初期位移状态;(c)蠕动初期应力状态
1 J-C FAUGèRES, GONTHIER E, MULDER T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic) [J]. Marine Geology, 2002, 182(3): 279-302.
2 LEE H J, SYVITSKI J P M, PARKER G, et al. Distinguishing sediment waves from slope failure deposits: field examples, including the 'Humboldt slide', and modelling results [J]. Marine Geology, 2002, 192(1): 79-104.
3 CATTANEO A, CORREGGIARI A, MARSSET T, et al. Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves [J]. Marine Geology, 2004, 213(1): 121-148.
4 CHEN Shanshan, SUN Yunbao, WU Shiguo. Sea bottom landslide in the Shenhu area on the north margin of South China Sea and triggering mechanisms[J]. Marine Geology Frontiers, 2012, 28(6): 40-45.
4 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制 [J]. 海洋地质前沿, 2012, 28(6): 40-45.
5 SHILLINGTON D J, SEEBER L, SORLIEN C C, et al. Evidence for widespread creep on the flanks of the sea of Marmara transform basin from marine geophysical data [J]. Geology, 2012, 40(5): 439-442.
6 URGELES R, DE MOL B, LIQUETE C, et al. Sediment undulations on the Llobregat prodelta: signs of early slope instability or sedimentary bedforms?[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5). DOI:10.1029/2005JB003929.
doi: 10.1029/2005JB003929
7 SUN Q, LESLIE S. Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea [J]. Marine and Petroleum Geology, 2020, 112: 10411. DOI:110.1016/j.marpetgeo.2019.104111.
doi: 110.1016/j.marpetgeo.2019.104111
8 URGELES R, CATTANEO A, PUIG P, et al. A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation [J]. Marine Geophysical Research, 2011, 32(1): 49-69.
9 LOCAT J, LEE H J. Submarine landslides: advances and challenges [J]. Canadian Geotechnical Journal, 2002, 39(1): 193-212.
10 YANG Wenda, LI Bin, HU Jinying, et al. Using 3D seismic data to evaluate deepwater geohazards for well site investigation: a case of Qiongdongnan Block in South China Sea[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 83-90.
10 杨文达, 李斌, 胡津荧, 等. 三维地震资料在深水油气勘探井场地质灾害评价中的运用——以南海琼东南海区为例[J].海洋地质与第四纪地质, 2013, 33(1): 83-90.
11 LIU Lejun, FU Mingzuo, LI Jiagang, et al. Geologic hazards in the deep pipeline routing area of the Liwan 3-1 gas field in the South China Sea[J]. Advances in Marine Science, 2014, 32(2): 162-174.
11 刘乐军, 傅命佐, 李家钢, 等. 荔湾3-1气田海底管道深水段地质灾害特征 [J]. 海洋科学进展, 2014, 32(2): 162-174.
12 HE Y, ZHONG G, WANG L, et al. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea [J]. Marine and Petroleum Geology, 2014, 57: 546-560.
13 QIAO S, SU M, KUANG Z, et al. Canyon-related undulation structures in the Shenhu area, northern South China Sea [J]. Marine Geophysical Research, 2015, 36(2/3): 243-252.
14 LI J, LI W, ALVES T M, et al. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location [J]. Marine Geology, 2019, 413: 99-111.
15 LI W, ALVES T M, WU S, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284.
16 SU M, LIN Z, WANG C, et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2020: 106166. DOI:10.1016/j.margeo.2020.106166.
doi: 10.1016/j.margeo.2020.106166
17 RUCI?SKA-ZJADACZ M, WRóBLEWSKI R. The complex geomorphology of a barrier spit prograding into deep water, Hel Peninsula, Poland [J]. Geo-Marine Letters, 2018, 38(6): 513-525.
18 PUTANS V A, MERKLIN L R, LEVCHENKO O V. Sediment waves and other forms as evidence of geohazards (Caspian Sea)[C]//The twentieth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers, 2010.
19 HILL P, MORAN K, BLASCO S. Creep deformation of slope sediments in the Canadian Beaufort Sea [J]. Geo-Marine Letters, 1982, 2(3/4): 163.
20 MULDER T, COCHONAT P. Classification of offshore mass movements [J]. Journal of Sedimentary Research, 1996, 66(1): 43-57.
21 DAN G, SULTAN N, SAVOYE B. The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling [J]. Marine Geology, 2007, 245(1): 40-64.
22 GONTHIER E, CIRAC P, J-C FAUGERES, et al. Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay) [J]. Scientia Marina, 2006, 70(S1): 89-100.
23 FERNáNDEZ-SALAS L M, LOBO F J, SANZ J L, et al. Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin [J]. Marine Geology, 2007, 243(1): 31-56.
24 LEE S H, CHOUGH S K. High-resolution (2-7 kHz) acoustic and geometric characters of submarine creep deposits in the South Korea Plateau, East Sea [J]. Sedimentology, 2001, 48(3): 629-644.
25 SAINT-ANGE F, KUUS P, BLASCO S, et al. Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada [J]. Marine Geology, 2014, 355: 136-149.
26 GEISSLER W H, GEBHARDT A C, Gross F, et al. Arctic megaslide at presumed rest [J]. Scientific Reports, 2016, 6(1): 1-8.
27 HE Ye, ZHONG Guangfa. Current status of submarine landslides and their seismic recognition [J]. Marine Sciences, 2015,39(1):116-125.
27 何叶, 钟广法. 海底滑坡及其反射地震识别综述 [J]. 海洋科学, 2015, 39(1): 116-125.
28 MA Benjun, QIN Zhiliang, WU Shiguo, et al. An overview of deep-water slope types and their corresponding sedimentary processes and productions[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1 075-1 090.
28 马本俊, 秦志亮, 吴时国, 等. 深水斜坡类型与沉积过程及其产物研究进展[J]. 沉积学报, 2018, 36(6): 1 075-1 090.
29 WANG Longzhang, YAO Yongjian, LIN Weibing, et al. Sediment waves in the south of South China Sea: soft sediment deformation and its triggering mechanism [J]. Earth Science, 2018, 43(10): 3 462-3 470.
29 王龙樟, 姚永坚, 林卫兵, 等. 南海南部沉积物波: 软变形及其触发机制 [J]. 地球科学, 2018, 43(10): 3 462-3 470.
30 WYNN R B, STOW D A V. Classification and characterisation of deep-water sediment waves [J]. Marine Geology, 2002, 192(1): 7-22.
31 FANETTI D, ANSELMETTI F S, CHAPRON E, et al. Megaturbidite deposits in the Holocene basin fill of Lake Como (Southern Alps, Italy) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259(2): 323-340.
32 MALTMAN A. Deformation structures preserved in rocks [M]// The geological deformation of sediments. Springer, 1994: 261-307.
33 HAMPTON M A, LEE H J, LOCAT J. Submarine landslides [J]. Reviews of Geophysics, 1996, 34(1): 33-59.
34 BOLAT R M. Explaining creep-like deformation in the marmara sea: results from AVO-derived Vp/Vs and pore pressure analysis [D]. Dallas, TX: Southern Methodist University, 2017.
35 LOBO F J, GOFF J A, MENDES I, et al. Spatial variability of prodeltaic undulations on the Guadalfeo River prodelta: support to the genetic interpretation as hyperpycnal flow deposits [J]. Marine Geophysical Research, 2015, 36(4): 309-333.
36 BERNDT C, CATTANEO A, SZUMAN M, et al. Sedimentary structures offshore Ortona, Adriatic Sea—deformation or sediment waves?[J]. Marine Geology, 2006, 234(1): 261-270.
37 REBESCO M, NEAGU R C, CUPPARI A, et al. Morphobathymetric analysis and evidence of submarine mass movements in the western Gulf of Taranto (Calabria margin, Ionian Sea)[J]. International Journal of Earth Sciences, 2009, 98(4): 791-805.
38 SULTAN N, CATTANEO A, URGELES R, et al. A geomechanical approach for the genesis of sediment undulations on the Adriatic shelf[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4). DOI:10.1029/2007GC001822.
doi: 10.1029/2007GC001822
39 CORREGGIARI A, TRINCARDI F, LANGONE L, et al. Styles of failure in Late Holocene highstand prodelta wedges on the Adriatic Shelf [J]. Journal of Sedimentary Research, 2001, 71(2): 218-236.
40 ROMAGNOLI C, GABBIANELLI G. Late Quaternary sedimentation and soft-sediment deformation features in the Corigliano Basin, North Ionian Sea (Mediterranean) [J]. Giornale di Geologia, 1990, 52(1/2): 33-53.
41 KATSMAN R. Sediment undulations induced by free gas in muddy marine sediments: a modeling approach [J]. Geophysical Research Letters, 2013, 40(13): 3 379-3 383.
[1] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[2] 郑勇玲,吴承强,蔡 锋,鲍晶晶,许 艳. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9): 1026-1034.