地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 221 -233. doi: 10.11867/j.issn.1001-8166.2017.03.0221

   下一篇

珊瑚礁的成岩作用
王瑞 1, 2, 3( ), 余克服 1, 2, 3, *( ), 王英辉 1, 2, 3, 边立曾 3, 4   
  1. 1.广西大学海洋学院,广西 南宁 530004
    2.广西南海珊瑚礁研究重点实验室,广西 南宁 530004
    3.广西大学珊瑚礁研究中心,广西 南宁 530004
    4.南京大学地球科学与工程学院, 江苏 南京 210093
  • 收稿日期:2016-11-26 修回日期:2017-01-25 出版日期:2017-03-20
  • 通讯作者: 余克服 E-mail:wrzfl@gxu.edu.cn;kefuyu@scsio.ac.cn
  • 基金资助:
    国家自然科学基金重大研究计划重点支持项目“珊瑚礁千米深钻记录的西沙碳酸盐台地形成演化和环境变迁史”(编号:91428203);广西珊瑚礁资源与环境八桂学者项目(编号:2014BGXZGX03)资助

The Diagenesis of Coral Reefs

Rui Wang 1, 2, 3( ), Kefu Yu 1, 2, 3, *( ), Yinghui Wang 1, 2, 3, Lizeng Bian 3, 4   

  1. 1.School of Marine Sciences, Guangxi University, Nanning 530004,China
    2.Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
    3.Coral Reef Research Center of China Guangxi University, Nanning 530004, China
    4.School of Earth Science and Engineering, Nanjing University, Nanjing 210093, China
  • Received:2016-11-26 Revised:2017-01-25 Online:2017-03-20 Published:2017-03-20
  • Contact: Kefu Yu E-mail:wrzfl@gxu.edu.cn;kefuyu@scsio.ac.cn
  • About author:

    First author:Wang Rui(1983-), male, Huainan City, Anhui Province, Lecturer. Research areas include sedimentary petrology of coral reefs.E-mail:wrzfl@gxu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The evolution and environmental change of Xisha carbonate platform recorded by kilometer deep drill in the coral reef”(No.91428203);Guangxi Ba-Gui Fellowship:Coral reef resources and environment (No.2014BGXZGX03)

珊瑚礁作为古环境记录的良好载体,时常受到成岩作用的制约,正确认识和评价成岩作用,是开展珊瑚礁古环境重建的关键。珊瑚礁成岩作用主要包括胶结作用、溶解作用、新生变形作用和白云岩化作用等类型。一方面,成岩作用本身可记录珊瑚礁经历的海平面升降、气候变化、海水性质改变、热液改造、微生物活动等地质过程,利用成岩演化过程可恢复古环境变化过程;另一方面,成岩作用又对珊瑚礁记录的原始环境信息产生了破坏,恢复古环境时需识别成岩作用对其影响的程度。在未来研究中,应加强成岩作用与现代气候环境、海平面变化、大气淡水改造、微生物活动的关系研究,以期提供更准确、更长时间序列的珊瑚礁古环境记录。

Coral reefs are often constrained by diagenesis as a sound environmental archive. The correct understanding and evaluation of diagenesis is the key to the paleoenvironmental reconstruction of coral reefs. The diagenesis of coral reefs mainly includes cementation, dissolution, neomorphism and dolomitization etc. On the one hand, the diagenesis itself can record the paleoenvironment that coral reefs underwent, such as sea-level fluctuation, climate change, change of sea water, hydrothermal alteration, microbial activity and so on. The diagenetic evolution thus can be used for the reconstruction of paleoenvironment change. On the other hand, diagenesis also destroys the original environmental information which recorded of coral reefs recard, and it is necessary to know the degree of the impact of diagenesis. In the future, we should pay more attention to the study on the relationships among diagenesis, modern climate, sea-level change, atmospheric water transformation and microbial activity. It can provide more accurate and longer time series of paleoenvironmental information that coral reefs recorded.

中图分类号: 

图1 珊瑚礁典型成岩作用类型显微照片 [ 44 ]
(a)腹足体腔孔内见等厚环边文石针(if)和葡萄状文石发育(Ab),p为原生孔隙,正交光;(b)叶片状高镁方解石胶结物(cf)呈等厚环边状发育在生物颗粒间的孔隙内,ca为珊瑚藻,fo为有孔虫,正交光;(c) 高镁方解石微晶球粒(pm)充填在珊瑚骨架孔洞内,单偏光;(d)针纤状低镁方解石(cw)显示的齿槽状构造,正交光;(e)新月形(me)和重力悬垂形(ms)低镁方解石胶结物,单偏光;(f)形成在大气淡水潜流带的棱柱状(cd)和块状(cg)低镁方解石胶结物,单偏光
Fig.1 Microscopic photographs of typical diagenesis types in coral reefs [ 44 ]
(a)Isopachous epitaxial overgrowths of acicular aragonite (if) and spherular aragonite (Ab) around and within a gastropod shell respectively (crossed polars), p:primary pore; (b) Isopachous fringes of bladelike, high-magnesium calcite (cf) surrounding skeletal grains (ca:coralline alga, fo: foraminiferan) (crossed polars); (c) Micrite peloids (pm) filling intraskeletal cavities in coral (plane polarized light); (d) Alveolar septal fabrics showing needle fibres of low-magnesium calcite(cw) (crossed polars); (e) Meniscus (me) and pendent (microstalactitic) (ms) cements of low-magnesium calcite(plane polarized light); (f) Prismatic (cd) and blocky (cg) cements of low-magnesium calcite formed within a meteoric phreatic zone (plane polarized light)
图2 图示珊瑚礁复合体中胶结物的分布 [ 31 ]
1.海相胶结物;2.非海相大气淡水胶结物;3.灰色为火山基底;(a)穆鲁路环礁,大洋洲;(b)半翘起的乌韦阿(Ouvéa)半环礁,新喀里多尼亚;(c)翘起的马雷(Maré)台地/环礁,新喀里多尼亚
Fig.2 Schematic distribution of cements in the coral reef complex [ 31 ]
1.Schematic distribution of early marine cements; 2.Nonmarine meteoric cements at the scale of platform or reef complex;3.Volcanic basement in gray;(a)Mururoa Atoll, French Polynesia; (b)The tilted half-atoll of Ouve' a, Loyalty Islands, New Caledonia; (c) The tilted platform/atoll of Mare', Loyalty Islands, New Caledonia
[1] Zhang Qiaomin, Yu Kefu, Shi Qi,et al.The resource characteristics and distribution of China coral reefs[C]∥National Marine Hi-tech Industry Forum,2005.
[张乔民, 余克服, 施祺,等. 中国珊瑚礁分布和资源特点[C]∥全国海洋高新技术产业化论坛,2005.]
[2] Sayani H R, Cobb K M, Cohen A L, et al.Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals[J]. Geochimica et Cosmochimica Acta, 2011,75(21):6 361-6 373.
[3] Yu Kefu.Coral reefs in the South China Sea: Their response to and records on past environmental changes[J].Science in China (Series D), 2012, 42(8): 1 217-1 229.
[余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:D辑, 2012, 42(8): 1 217-1 229.]
[4] Yu Kefu, Zhang Guangxue, Wang Ren.Studies on the coral reefs of the South China Sea: From global change to oil-gas exploration[J].Advances in Earth Science, 2014, 29(11):1 287-1 293.
[余克服, 张光学, 汪稔. 南海珊瑚礁:从全球变化到油气勘探——第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11):1 287-1 293.]
[5] Bates R L, Jackson J A.Glossary of Geology(2nd)[M].Virginia:American Geological Institute, 1980:751.
[6] Cullis C G.The Mineralogical Changes Observed in the Cores of the Funafuti Borings[M].London:The Atoll of Funafuti Royal Society London, 1904: 392-420.
[7] Macintyre I G, Mountjoy E W, D’Anglejan B F. An occurrence of submarine cementation of carbonate sediments off the west coast of Barbados[J].Journal of Sedimentary Research,1968, 32(2):660-664.
[8] Ginsburg R N, Shinn E A, Schroeder J H.Submarine cementation and internal sedimentation within Bermuda reefs[J].Geological Society of America, Special Paper, 1967, 115: 78-79.
[9] Friedman G M, Amiel A J, Schniedermann N.Submarine cementation in reefs: Example from the Red Sea[J]. Journal of Sedimentary Research, 1974, 44(3):816-825.
[10] Land L S, Goreau T F.Submarine lithification of Jamaican reefs[J].Journal of Sedimentary Research, 1970, 40(1):457-462.
[11] Schroeder J H, Purser B H.Reef Diagenesis[M]. Berlin:Springer Berlin Heidelberg, 1986.
[12] Goter E R, Friedman G M.Deposition and diagenesis of the windward reef of Enewetak Atoll[J].Carbonates and Evaporites, 1988, 2(2): 157-179.
[13] Aissaoui D M, Buigues D, Purser B H.Model of reef diagenesis: Mururoa atoll, French Polynesia[M]∥Reef Diagenesis. Berlin:Springer Berlin Heidelberg, 1986: 27-52.
[14] Marshall J F.Regional Distribution of Submarine Cements Within an Epicontinental Reef System: Central Great Barrier Reef, Australia[M]∥ Reef Diagenesis. Berlin: Springer Berlin Heidelbeng,1986:8-26.
[15] Dullo W C.Variation in Diagenetic Sequences: An Example from Pleistocene Coral Reefs, Red Sea, Saudi Arabia[M]∥ Reef Diagenesis. Berlin:Springer Berlin Heidelberg, 1986:77-90.
[16] Zhu Z R, Marshall J, Chappell J.Diagenetic sequences of reef-corals in the late Quaternary raised coral reefs of the Huon Peninsula, New Guinea[C]∥6th International Coral Reef Symposium. Australia,1988: 565-573.
[17] Allan J R, Matthews R K.Isotope signatures associated with early meteoric diagenesis[J].Sedimentology, 1982, 29(6): 797-817.
[18] Buddemeier R W, Oberdorfer J A.Internal hydrology and geochemistry of coral reefs and atoll islands: Key to diagenetic variations[M]∥Reef Diagenesis. Berlin:Springer Berlin Heidelberg, 1986: 91-111.
[19] Strasser A, Strohmenger C.Early diagenesis in Pleistocene coral reefs, southern Sinai, Egypt: Response to tectonics, sea-level and climate[J].Sedimentology, 1997, 44(3):537-558.
[20] Zhu Z R, Marshall J F, Chappell J.Effects of differential tectonic uplift on Late Quaternary coral reef diagenesis, Huon Peninsula, Papua New Guinea[J].Australian Journal of Earth Sciences, 1994, 41(5): 463-474.
[21] Strasser A, Strohmenger C, Davaud E, et al.Sequential evolution and diagenesis of Pleistocene coral reefs (South Sinai, Egypt)[J]. Sedimentary Geology, 1992, 78(1/2):59-79.
[22] Dalbeck P, Cusack M, Dobson P S,et al.Identification and composition of secondary meniscus calcite in fossil coral and the effect on predicted sea surface temperature[J]. Chemical Geology, 2011, 280(3/4):314-322.
[23] Nader F, Bachaud P, Michel A.Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies[C]∥EGU General Assembly Conference Abstracts. 2015, 17: 8 270.
[24] Webb G E, Nothdurft L D, Kamber B S, et al.Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite[J]. Sedimentology, 2009, 56(5): 1 433-1 463.
[25] Lachniet M S, Bernal J P, Asmerom Y, et al.Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite[J]. Quaternary Geochronology, 2012, 14(4): 26-37.
[26] Roberts A P.Magnetic mineral diagenesis[J].Earth-Science Reviews, 2015, 151: 1-47.
[27] Braithwaite C J R, Montaggioni L F. The great barrier reef: A 700 000 year diagenetic history[J].Sedimentology, 2009, 56(6): 1 591-1 622.
[28] Braithwaite C J R, Camoin G F. Diagenesis and sea-level change: Lessons from Moruroa, French Polynesia[J]. Sedimentology, 2011, 58(1): 259-284.
[29] Kumar S K, Chandrasekar N, Seralathan P,et al.Diagenesis of Holocene reef and associated beachrock of certain coral islands, Gulf of Mannar, India: Implication on climate and sea level[J]. Journal of Earth System Science, 2012, 121(3): 733-745.
[30] Webb G E, Nothdurft L D, Zhao JianXin,et al. Significance of shallow core transects for reef models and sea-level curves, Heron Reef, Great Barrier Reef[J]. Sedimentology, 2016, 63(6):1 396-1 424.
[31] Perrin C.Diagenesis[M]. Netherlands:Springer Netherlands, 2011.
[32] The Multidisciplinary Oceanographic Expedition Team of Academia Sinica to Nansha Islands. Quatenary Coral Reef Geology of Yongshu Reef, Nansha Islands[M]. Beijing:Ocean Press,1992.
[中国科学院南沙综合科学考察队. 南沙群岛永署礁第四纪珊瑚礁地质[M]. 北京:海洋出版社, 1992.]
[33] Sun Qiliang, Ma Yubo, Zhao Qiang, et al.Different reef carbonate diagenesis and its influent ial factors, Northern South China Sea[J]. Natural Gas Geoscience, 2008, 19(5):665-672.
[孙启良, 马玉波, 赵强,等. 南海北部生物礁碳酸盐岩成岩作用差异及其影响因素研究[J]. 天然气地球科学, 2008, 19(5):665-672.]
[34] Zhao Shuang, Zhang Daojun, Liu Li, et al.Diagenetic characteristics of quaternary reef-carbonates from Well Xike-1, Xisha Islands, the South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4):711-717.
[赵爽, 张道军, 刘立,等. 南海西沙海域西科1井第四系生物礁:碳酸盐岩成岩作用特征[J]. 地球科学——中国地质大学学报, 2015, 40(4):711-717.]
[35] Zhu Yuanzhi, Sha Qing’an.The relationship between diagenesis of Quatenary coral reef of Yongshu Reef in Nansha Islands and Sea level changes[J].Tropic Oceanlogy, 1994,13(2):1-8.
[朱袁智, 沙庆安. 南沙群岛永暑礁第四纪珊瑚礁成岩作用与海平面变化关系[J]. 热带海洋学报, 1994,13(2):1-8.]
[36] Liu Jian, Han Chunrui, Wu Jianzheng,et al.Geochemical evidence for the meteoric diagenesis in pleistocene reef limestones of Xisha Islands[J]. Acta Sedimentologica Sinica, 1998,16(4):71-77.
[刘健, 韩春瑞, 吴建政,等. 西沙更新世礁灰岩大气淡水成岩的地球化学证据[J]. 沉积学报, 1998,16(4):71-77.]
[37] Wei Xi, Jia Chengzao, Meng Weigong.Dolomitization characteristics of carbonate rock in Xisha Islands and its formation:A case study of Well Xichen-1[J].Jounal of Jilin University(Earth Science Edition), 2008, 38(2):217-224.
[魏喜, 贾承造, 孟卫工. 西沙群岛西琛1井碳酸盐岩白云石化特征及成因机制[J]. 吉林大学学报:地球科学版, 2008, 38(2):217-224.]
[38] Zhang Mingshu, Liu Jian, Li Shaoquan,et al.Diagenesis of the reef succession in the Xisha Islands[J]. Acta Geologica Sinica, 1997,(3):236-244.
[张明书, 刘健,李绍全,等. 西沙群岛西琛一井礁序列成岩作用研究[J]. 地质学报, 1997,(3):236-244.]
[39] The Multidisciplinary Oceanographic Expedition Team of Academia Sinica to Nansha Islands. Quaternary Sedimentary Geology of Nansha Islands and Adiacent Sea Area[M]. Wuhan:Hubei Science and Technology Press, 1993.
[中国科学院南沙综合科学考察队.南沙群岛及其邻近海区第四纪沉积地质学[M].武汉:湖北科学技术出版社,1993.]
[40] Wang Zhenfeng, Shi Zhiqiang, Zhang Daojun, el at. Microscopic features and genesis for miocene topliocene dolomite in well Xike-1, Xisha Islands[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4):633-644.
[王振峰, 时志强, 张道军,等. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因[J]. 地球科学——中国地质大学学报, 2015, 40(4):633-644.]
[41] Greegor R B, Pingitore N E, Lytle F W.Strontianite in coral skeletal aragonite[J].Science, 1997,275(5 305): 1 452-1 454.
[42] Schroeder J H, Purser B H.Reef Diagenesis[M]. Berlin:Springer Berlin Heidelberg, 2012.
[43] Wolf K H.Carbonate sediments and their diagenesis[J].Earth-Science Reviews, 1973, 9(2): 152-157.
[44] Montaggioni L F, Braithwaite C J R. Chapter eight reef diagenesis[J].Developments in Marine Geology, 2009, 5:323-372.
[45] Friedman G M.Rapidity of marine carbonate cementation-implications for carbonate diagenesis and sequence stratigraphy: Perspective[J]. Sedimentary Geology, 1998, 119(1):1-4.
[46] Huang Sijing.Diagenesis of Carbonate Rocks[M]. Beijing:Geological Publishing House,2010.
[黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010.]
[47] Schroeder J H.Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs[J].Geologische Rundschau, 1972, 61(2):708-730.
[48] James N P, Ginsburg R N, Marszalek D S, et al.Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs[J]. Journal of Sedimentary Petrology, 1976, 46(3):523-544.
[49] Aissaoui D M, Purser B H.Reef diagenesis: Cementation at Mururoa atoll (French Polynesia)[C]∥Proceeding of 5th Internatimal Coral Reef Congress,1985: 257-262.
[50] James N P, Ginsburg R N.The Seaward Margin of Belize Barrier and Atoll Reefs[M].Oxford: Diagenesis Blackwell Publishing Ltd., 2009:55-80.
[51] Pierson B J, Shinn E A.Cement distribution and carbonate mineral stabilization in Pleistocene limestones of Hogsty Reef, Bahamas[M]∥SchneidermannN, Harris P M, eds. Carbonate Cements: The Society of Economic Paleontologists and Mineralogists (SEPM),1985.
[52] Cailleau G, Verrecchia E P, Braissant O, et al.The biogenic origin of needle fibre calcite[J]. Sedimentology, 2009, 56(6):1 858-1 875.
[53] Berbey H.Sédimentologie et Géochimie de la Transition Substrat Volcanique-couverture Sédimentaire del’Atoll de Mururoa (Polynésie Française)[D]. Orsay:Universite Paris-sud, 1989.
[54] Ginsburg R N, Marszalek D S, Schneidermann N.Ultrastructure of carbonate cements in a Holocene algal reef of Bermuda[J].Journal of Sedimentary Petrology, 1971, 41(2):472-482.
[55] Lighty R G.Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf[M]∥Schneiderman N, Harris P M, eds. Carbonate Cements. Society of Economic Paleontologists and Mineralogist, Tulsa, Okla, 1985:123-151.
[56] Alexandersson E T, Macintyre I G.Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama: Discussion and reply[J].Journal of Sedimentary Research, 1978, 48(2):665-670.
[57] Carrière D.Sédimentation, Diagenèse et Cadre Géodynamique de l’atoll Soulevé de Maré, Nouvelle Calédonie[D]. Orsay:Universite Paris-sud, 1987.
[58] Morse J W, Given R K, Wilkinson B H.Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates[J]. Science, 1985, 55(1):109-119.
[59] Morse J W, Wang Q, Tsio M Y.Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater[J]. Geology, 1997, 25(1):85-87.
[60] Gonzalez L A, Carpenter S J, Lohmann K C.Inorganic calcite morphology: Roles of fluid chemistry and fluid flow[J].Journal of Sedimentary Research, 1992, 62(3):382-399.
[61] Frisia S, Borsato A, Fairchild I J, et al.Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland[J]. Journal of Sedimentary Research, 2000, 70(5):1 183-1 196.
[62] Buczynski C, Chafetz H S.Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy[J].Journal of Sedimentary Research, 1991, 61(2):226-233.
[63] Verrecchia E P, Freytet P, Verrecchia K E,et al.Spherulites in calcrete laminar crusts: Biogenic CaCO3 precipitation as a major contributor to crust formation[J]. Journal of Sedimentary research, 1995, 65(4):690-700.
[64] Chave K E, Deffeyes K S, Weyl P K, et al.Observations on the solubility of skeletal carbonates in aqueous solutions[J]. Science, 1962, 137(3 523): 33-34.
[65] Constantz B R.The primary surface area of corals and variations in their susceptibility to diagenesis[M]∥Reef Diagenesis. Berlin:Springer Berlin Heidelberg, 1986: 53-76.
[66] Perrin C, Smith D C.Earliest steps of diagenesis in living scleractinian corals: Evidence from ultrastructural pattern and Raman spectroscopy[J].Journal of Sedimentary Research, 2007, 77(6): 495-507.
[67] Aissaoui D M.Magnesian calcite cements and their diagenesis: Dissolution and dolomitization, Mururoa Atoll[J].Sedimentology, 1988, 35(5): 821-841.
[68] Walter L M.Relative reactivity of skeletal carbonates during dissolution: Implications for diagenesis[M]∥Schneiderman N, Harris P M, eds. Carbonate Cements. Society of Economic Paleontologists and Mineralogist,Tula,Okla, 1985:3-16.
[69] Folk R L.Some aspects of recrystallization in ancient limestones[M]∥Schneiderman N, Harris P M, eds. Carbonate Cements. Tulsa, Okla, 1965:14-48.
[70] Martin G D, Wilkinson B H, Lohmann K C.The role of skeletal porosity in aragonite neomorphism-Strombus and Montastrea from the Pleistocene Key Largo Limestone, Florida[J].Journal of Sedimentary Petrology, 1986, 56(2):194-203.
[71] Wollast R, Reinhard-Derie D.Equilibrium and mechanism of dissolution of Mg-calcites[M]∥The Fate of Fossil Fuel CO2 in the Oceans. New York:Plenum Press, 1977: 479-492.
[72] Buigues D.Sédimentation et Diagenése des Formations Carbonatees de l’atoll de Mururoa (Polynesie Française)[M]. Orsay:Université Paris-Sud, 1982.
[73] Fantle M S, Higgins J.The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J].Geochimica et Cosmochimica Acta, 2014, 142:458-481.
[74] Gregg J M, Bish D L, Kaczmarek S E,et al.Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6):1 749-1 769.
[75] Huang Qingyu, Liu Wei, Zhang Yanqiu,et al.Progress of research on dolomitization and dolomite reservoir[J]. Advances in Earth Science, 2015, 30(5):539-551.
[黄擎宇, 刘伟, 张艳秋,等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展,2015, 30(5):539-551.]
[76] Machel H G.Concepts and models of dolomitization: A critical reappraisal[J].Geological Society, London, Special Publications, 2004, 235(1): 7-63.
[77] Rougerie F.Nature et fonctionnement des atolls des Tuamotu (Polynésie Française)[J].Oceanologica Acta, 1995, 18(1): 61-78.
[78] Rougerie F, Wauthy B.Le concept d’endo-upwelling dans le fonctionnement des atolls-oasis[J].Oceanologica Acta, 1986, 9(2): 133-148.
[79] He Qixiang, Zhang Minshu.Origin of neogene dolomites in Xisha Islands and their significance[J]. Marine Geology & Quaternary Geology, 1990,10(2):45-55.
[何起祥,张明书. 西沙群岛新第三纪白云岩的成因与意义[J]. 海洋地质与第四纪地质, 1990,10(2):45-55.]
[80] Zinke J, Dullo W C, Heiss G A, et al.ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995[J]. Earth and Planetary Science Letters, 2004, 228(1): 177-194.
[81] Abram N J, Gagan M K, Liu Z, et al.Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch[J]. Nature, 2007, 445(7 125): 299-302.
[82] Smith T M, Reynolds R W.Improved extended reconstruction of SST (1854-1997)[J].Journal of Climate, 2004, 17(12): 2 466-2 477.
[83] Cabioch G, Ayliffe L K.Raised coral terraces at Malakula, Vanuatu, Southwest Pacific, indicate high sea level during marine isotope stage 3[J].Quaternary Research, 2001, 56(3): 357-365.
[84] Nothdurft L D, Webb G E.Earliest diagenesis in scleractinian coral skeletons: Implications for palaeoclimate-sensitive geochemical archives[J].Facies, 2009, 55(2): 161-201.
[85] Beck J W, Edwards R L, Ito E,et al.Sea-surface temperature from coral skeletal strontium/calcium ratios[J]. Science, 1992, 257(5 070): 644-647.
[86] Alibert C, McCulloch M T. Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO[J].Paleoceanography, 1997, 12(3): 345-363.
[87] Cohen A L, Hart S R.Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral[J].Paleoceanography, 2004, 19(4):1 730-1 737.
[88] Allison N, Finch A A, Webster J M,et al.Palaeoenvironmental records from fossil corals: The effects of submarine diagenesis on temperature and climate estimates[J]. Geochimica et Cosmochimica Acta, 2007, 71(19):4 693-4 703.
[89] Mcgregor H V, Gagan M K.Diagenesis and geochemistry of porites, corals from Papua New Guinea: Implications for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2003, 67(12):2 147-2 156.
[90] Matthews R K, Frohlich C.Forward modeling of bank-margin carbonate diagenesis[J].Geology, 1987, 15(7):673-676.
[91] Quinn T M, Matthews R K.Post-Miocene diagenetic and eustatic history of Enewetak Atoll: Model and data comparison[J].Geology, 1990, 18(10): 942-945.
[92] Whitaker F, Smart P, Hague Y,et al.Coupled two-dimensional diagenetic and sedimentological modeling of carbonate platform evolution[J]. Geology, 1997, 25(2): 175-178.
[93] Melim L A, Westphal H, Swart P K, et al.Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas[J]. Marine Geology, 2002, 185(1): 27-53.
[94] Braithwaite C J R, Montaggioni L F. The Great Barrier Reef: A 700 000 year diagenetic history[J].Sedimentology, 2009, 56(6): 1 591-1 622.
[95] Swart P K.The geochemistry of carbonate diagenesis: The past, present and future[J].Sedimentology, 2015, 62(5): 1 233-1 304.
[96] Derry L A, Kaufman A J, Jacobsen S B.Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes[J].Geochimica et Cosmochimica Acta, 1992, 56(3): 1 317-1 329.
[97] Webb G E, Kamber B S.Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J].Geochimica et Cosmochimica Acta, 2000, 64(9): 1 557-1 565.
[98] Allwood A C, Kamber B S, Walter M R,et al.Trace elements record depositional history of an Early Archean stromatolitic carbonate platform[J]. Chemical Geology, 2010, 270(1): 148-163.
[99] Fantle M S, Maher K M, Depaolo D J.Isotopic approaches for quantifying the rates of marine burial diagenesis[J].Reviews of Geophysics, 2010, 48(3):633-650.
[100] Buonocunto F P, Sprovieri M, Bellanca A,et al.Cyclostratigraphy and high-frequency carbon isotope fluctuations in Upper Cretaceous shallow-water carbonates, southern Italy[J]. Sedimentology, 2002, 49(6): 1 321-1 337.
[101] Morse J W, Arvidson R S, Lüttge A.Calcium carbonate formation and dissolution[J].Chemical Reviews, 2007, 107(2): 342-381.
[102] Werner U, Blazejak A, Bird P,et al.Microbial photosynthesis in coral reef sediments (Heron Reef, Australia)[J]. Estuarine, Coastal and Shelf Science, 2008, 76(4): 876-888.
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[7] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[8] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[9] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[10] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[11] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[12] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[13] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[14] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[15] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
阅读次数
全文


摘要