地球科学进展 ›› 2018, Vol. 33 ›› Issue (9): 922 -932. doi: 10.11867/j.issn.1001-8166.2018.09.0922

综述与评述 上一篇    下一篇

海相碳酸盐岩稀土元素在古环境研究中的应用
王宇航 1( ), 朱园园 2, *( ), 黄建东 3, 宋虎跃 1, 杜勇 1, 李哲 1   
  1. 1.中国地质大学生物地质与环境地质国家重点实验室,湖北 武汉 430074
    2.中国地质调查局武汉地质调查中心,湖北 武汉 430223
    3.安徽省地质博物馆,安徽 合肥 230031
  • 收稿日期:2018-04-19 修回日期:2018-07-28 出版日期:2018-10-20
  • 通讯作者: 朱园园 E-mail:z1076614465@163.com;zhuyuanyuancug@21cn.com
  • 基金资助:
    ?国家自然科学基金项目“华南早三叠世深水相硫同位素演化”(编号: 41402302);安徽省国土资源科技项目“安徽早三叠世巢湖龙动物群的古环境研究”(编号: 2016-K-5)资助.

Application of Rare Earth Elements of the Marine Carbonate Rocks in Paleoenvironmental Researches

Yuhang Wang 1( ), Yuanyuan Zhu 2, *( ), Jiandong Huang 3, Huyue Song 1, Yong Du 1, Zhe Li 1   

  1. 1.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Wuhan 430074, China
    2.Wuhan Center, China Geological Survey, Wuhan 430223, China
    3.Anhui Geological Museum, Hefei 230031, China
  • Received:2018-04-19 Revised:2018-07-28 Online:2018-10-20 Published:2018-10-24
  • Contact: Yuanyuan Zhu E-mail:z1076614465@163.com;zhuyuanyuancug@21cn.com
  • About author:

    First author:Wang Yuhang(1994-), male, Huanggang City,Hubei Province, Master student. Research areas include carbonate geochemistry. E-mail:z1076614465@163.com

  • Supported by:
    * Foundation item:Project supported by the National Natural Science Foundation of China "Sulfur isotope evolution in deep water facies of South China during the Early Triassic"(No.41402302);The Science and Technological Project of Land and Resources of Anhui Province "Paleo-environment of the Anhui ichthyosaur fauna during the early Triassic"(No.2016-K-5).

海相碳酸盐岩稀土元素(REE)配分模式和含量比值在古海洋环境研究中发挥着重要的作用。尽管海相碳酸盐岩REE主要来源于海水,但是也可能受到陆源碎屑输入和后期成岩改造的影响,因此需要对获得的REE可靠性进行全面评估。与此同时,选取合适的分析方法对获得可靠的碳酸盐相REE含量至关重要。对碳酸盐岩REE的地球化学性质、化学分析与数据处理方法、可行性验证及古环境应用方面进行总结与展望。在未来工作中,应着重于建立更加完善的分析方法,结合宏观地质背景、微观岩相学特征、其他地球化学指标以及同期沉积页岩的REE信息,开展海相碳酸盐岩REE在古海洋环境的全球表现形式研究。

The pattern, contents and ratios of Rare Earth Elements (REE) from marine carbonates play an important role in the paleo-environmental researches. As result of the REE's source being variable, which includes marine carbonates, detrital input and diagenesis, the overall assessment for the reliability of REE's data is necessary. Furthermore, appropriate analytical method is vital for the reliable contents of REE. This paper reviewed the geochemical properties, analytical and data processing methods, feasibility verification and paleo-environmental application of carbonates REE. The patterns of REE, which provide theoretical basis for the provenance and depositional environment of carbonates, are various with different sources. Cerium, as a redox sensitive element, is a key proxy for the reconstruction of paleo-redox conditions. There are two available analytical methods, acid-leaching method and direct LA-ICP-MS analytical method, to extract REE of seawater preserved in marine carbonate rocks. The contamination from detritus and diagenetic alteration can be detected by the correlations of various elements or element ratios. The REE of marine carbonate has been well applied to reconstruct the environment changes during the Precambrian, Permian-Triassic transition and Cenozoic.

中图分类号: 

图1 典型自然环境和矿物中REE的PAAS标准化配分模式
Fig.1 PAAS-normalized REE patterns in typical natural environments and minerals
图1 典型自然环境和矿物中REE的PAAS标准化配分模式
Fig.1 PAAS-normalized REE patterns in typical natural environments and minerals
图2 不同酸溶解碳酸盐岩碳酸盐矿物提取液REE页岩标准化模式(据参考文献[ 54 ]修改)
Fig.2 Shale-normalized REE patterns of leachates from carbonate minerals in carbonate rocks treated by different acids (modified after reference[54])
图2 不同酸溶解碳酸盐岩碳酸盐矿物提取液REE页岩标准化模式(据参考文献[ 54 ]修改)
Fig.2 Shale-normalized REE patterns of leachates from carbonate minerals in carbonate rocks treated by different acids (modified after reference[54])
图3 0.22/0.45 μm过滤河水样品REE模式 [ 27 ]
0.22/0.45 μm过滤代表过滤后样品相同元素含量之比
Fig.3 REE patterns for 0.22/0.45 μm filtered river samples [ 27 ]
0.22/0.45 μm filtered represent the ratios of same elements filtered samples
图3 0.22/0.45 μm过滤河水样品REE模式 [ 27 ]
0.22/0.45 μm过滤代表过滤后样品相同元素含量之比
Fig.3 REE patterns for 0.22/0.45 μm filtered river samples [ 27 ]
0.22/0.45 μm filtered represent the ratios of same elements filtered samples
图4 酸溶法与LA-ICP-MS法测定碳酸盐矿物REE页岩标准化模式(据参考文献[ 57 ]修改)
Fig.4 Shale-normalized REE patterns of carbonate minerals analyzed by acid-leaching method and LA-ICP-MS method (modified after reference[57])
图4 酸溶法与LA-ICP-MS法测定碳酸盐矿物REE页岩标准化模式(据参考文献[ 57 ]修改)
Fig.4 Shale-normalized REE patterns of carbonate minerals analyzed by acid-leaching method and LA-ICP-MS method (modified after reference[57])
图5 Ce/Ce *与Pr/Pr *相互关系图 [ 58 , 61 ]
阴影部分代表现代海水范围
Fig.5 Corrections of Ce/Ce * and Pr/Pr * for marine carbonates [ 58 , 61 ]
The shaded area represents the range of modern seawater
图5 Ce/Ce *与Pr/Pr *相互关系图 [ 58 , 61 ]
阴影部分代表现代海水范围
Fig.5 Corrections of Ce/Ce * and Pr/Pr * for marine carbonates [ 58 , 61 ]
The shaded area represents the range of modern seawater
表1 REE常见参数计算公式
Table 1 Common methods of calculation for REE parameters
表1 REE常见参数计算公式
Table 1 Common methods of calculation for REE parameters
[1] Li Jun, Sang Shuxun, Lin Huixi, et al.REE characteristics and its geological significance of the Permo-Carboniferous in Bohaiwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4):589-596.
doi: 10.3969/j.issn.1000-0550.2007.04.013     URL    
Li Jun, Sang Shuxun, Lin Huixi, et al.REE characteristics and its geological significance of the Permo-Carboniferous in Bohaiwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4):589-596.
[李军, 桑树勋, 林会喜, 等.渤海湾盆地石炭二叠系稀土元素特征及其地质意义[J].沉积学报, 2007, 25(4):589-596.]
doi: 10.3969/j.issn.1000-0550.2007.04.013     URL    
[李军, 桑树勋, 林会喜, 等.渤海湾盆地石炭二叠系稀土元素特征及其地质意义[J].沉积学报, 2007, 25(4):589-596.]
doi: 10.3969/j.issn.1000-0550.2007.04.013     URL    
[2] Lan Xianhong, Li Rihui, Mi Beibei, et al.Distribution characteristics of rare earth elements in surface sediment and their provenance discrimination in the Eastern Bohai and Northern Yellow Seas[J]. Earth ScienceJournal of China University of Geosciences, 2016, 41(3):463-474.
doi: 10.3799/dqkx.2016.038     URL    
Lan Xianhong, Li Rihui, Mi Beibei, et al.Distribution characteristics of rare earth elements in surface sediment and their provenance discrimination in the Eastern Bohai and Northern Yellow Seas[J]. Earth ScienceJournal of China University of Geosciences, 2016, 41(3):463-474.
[蓝先洪, 李日辉, 密蓓蓓, 等.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别[J]. 地球科学——中国地质大学学报, 2016, 41(3):463-474.]
doi: 10.3799/dqkx.2016.038     URL    
[蓝先洪, 李日辉, 密蓓蓓, 等.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别[J]. 地球科学——中国地质大学学报, 2016, 41(3):463-474.]
doi: 10.3799/dqkx.2016.038     URL    
[3] Nothdurft L D, Webb G E, Kamber B S.Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
Nothdurft L D, Webb G E, Kamber B S.Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
[4] Li Jun, Zhao Jingtao.Characteristics of rare earth elements in the sediments from the middle Okinawa Trough and its application in the paleoenvironment evolution[J]. Progress in Natural Science, 2009, 19(12): 1 333-1 342.
doi: 10.3321/j.issn:1002-008X.2009.12.007     URL    
Li Jun, Zhao Jingtao.Characteristics of rare earth elements in the sediments from the middle Okinawa Trough and its application in the paleoenvironment evolution[J]. Progress in Natural Science, 2009, 19(12): 1 333-1 342.
[李军, 赵京涛.冲绳海槽中部沉积物稀土元素地球化学特征及其在古环境变化研究的应用[J]. 自然科学进展, 2009, 19(12): 1 333-1 342.]
doi: 10.3321/j.issn:1002-008X.2009.12.007     URL    
[李军, 赵京涛.冲绳海槽中部沉积物稀土元素地球化学特征及其在古环境变化研究的应用[J]. 自然科学进展, 2009, 19(12): 1 333-1 342.]
doi: 10.3321/j.issn:1002-008X.2009.12.007     URL    
[5] Kakuwa Y, Matsumoto R.Cerium negative anomaly just before the Permian and Triassic boundary event—The upward expansion of anoxia in the water column[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 335-344.
Kakuwa Y, Matsumoto R.Cerium negative anomaly just before the Permian and Triassic boundary event—The upward expansion of anoxia in the water column[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 335-344.
[6] Frimmel H E.Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
doi: 10.1016/j.chemgeo.2008.10.033     URL    
Frimmel H E.Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
doi: 10.1016/j.chemgeo.2008.10.033     URL    
[7] Li Y, Zhao L, Chen Z, et al.Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 6-16.
Li Y, Zhao L, Chen Z, et al.Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 6-16.
[8] Gao Changlin.REE geochemical characteristics of carbonate rocks in Southern Qinling, Shaanxi Province and their Paleo-Oceanologic significance[J]. Geochimica,1992, (4):383-390.
URL    
Gao Changlin.REE geochemical characteristics of carbonate rocks in Southern Qinling, Shaanxi Province and their Paleo-Oceanologic significance[J]. Geochimica,1992, (4):383-390.
[高长林. 陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义[J].地球化学, 1992, (4):383-390.]
URL    
[高长林. 陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义[J].地球化学, 1992, (4):383-390.]
URL    
[9] Ling H, Chen X, Li D, et al.Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
Ling H, Chen X, Li D, et al.Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
[10] Chen Song, Gui Herong, Sun Linhua, et al.Geochemical characteristics of REE in limestone of Jiudingshan Formation,Northern Anhui Province and their constraint on the seawater[J]. Geology in China, 2011, 38(3): 664-672.
doi: 10.3969/j.issn.1000-3657.2011.03.014     URL    
Chen Song, Gui Herong, Sun Linhua, et al.Geochemical characteristics of REE in limestone of Jiudingshan Formation,Northern Anhui Province and their constraint on the seawater[J]. Geology in China, 2011, 38(3): 664-672.
[陈松, 桂和荣, 孙林华, 等.皖北九顶山组灰岩稀土元素地球化学特征及对古海水的制约[J].中国地质, 2011, 38(3):664-672.]
doi: 10.3969/j.issn.1000-3657.2011.03.014     URL    
[陈松, 桂和荣, 孙林华, 等.皖北九顶山组灰岩稀土元素地球化学特征及对古海水的制约[J].中国地质, 2011, 38(3):664-672.]
doi: 10.3969/j.issn.1000-3657.2011.03.014     URL    
[11] Zhu Lixia, Fu Xiugen, Tan Fuwen, et al.REE geochemistry of the Upper Jurassic-Lower Cretaceous carbonate rocks and palaeoclimates in the Nadigangri region,Qiangtang Basin[J]. Sedimentary Geology & Tethyan Geology, 2010, 30(4): 92-96.
Zhu Lixia, Fu Xiugen, Tan Fuwen, et al.REE geochemistry of the Upper Jurassic-Lower Cretaceous carbonate rocks and palaeoclimates in the Nadigangri region,Qiangtang Basin[J]. Sedimentary Geology & Tethyan Geology, 2010, 30(4): 92-96.
[朱丽霞, 付修根, 谭富文, 等.羌塘盆地那底岗日地区上侏罗统—下白垩统碳酸盐岩稀土元素地球化学与古气候[J].沉积与特提斯地质, 2010, 30(4):92-96.]
[朱丽霞, 付修根, 谭富文, 等.羌塘盆地那底岗日地区上侏罗统—下白垩统碳酸盐岩稀土元素地球化学与古气候[J].沉积与特提斯地质, 2010, 30(4):92-96.]
[12] Cantrell K J, Byrne R H.Rare earth element complexation by carbonate and oxalate ions[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 597-605.
doi: 10.1016/0016-7037(87)90072-X     URL    
Cantrell K J, Byrne R H.Rare earth element complexation by carbonate and oxalate ions[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 597-605.
doi: 10.1016/0016-7037(87)90072-X     URL    
[13] Lee J H, Byrne R H.Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 295-302.
doi: 10.1016/0016-7037(93)90432-V     URL    
Lee J H, Byrne R H.Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 295-302.
doi: 10.1016/0016-7037(93)90432-V     URL    
[14] Pourret O, Davranche M, Gruau G, et al.Competition between humic acid and carbonates for rare earth elements complexation[J]. Journal of Colloid & Interface Science, 2007, 305(1): 25-31.
doi: 10.1016/j.jcis.2006.09.020     URL     pmid: 17052726
Pourret O, Davranche M, Gruau G, et al.Competition between humic acid and carbonates for rare earth elements complexation[J]. Journal of Colloid & Interface Science, 2007, 305(1): 25-31.
doi: 10.1016/j.jcis.2006.09.020     URL     pmid: 17052726
[15] Ge L, Jiang S Y, Swennen R, et al.Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1): 21-30.
Ge L, Jiang S Y, Swennen R, et al.Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1): 21-30.
[16] Bolhar R, Kamber B S, Moorbath S, et al.Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth & Planetary Science Letters, 2004, 222(1): 43-60.
doi: 10.1016/j.epsl.2004.02.016     URL    
Bolhar R, Kamber B S, Moorbath S, et al.Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth & Planetary Science Letters, 2004, 222(1): 43-60.
doi: 10.1016/j.epsl.2004.02.016     URL    
[17] Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3): 229-250.
Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3): 229-250.
[18] Tostevin R, Shields G A, Tarbuck G M, et al.Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162.
doi: 10.1016/j.chemgeo.2016.06.027     URL    
Tostevin R, Shields G A, Tarbuck G M, et al.Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162.
doi: 10.1016/j.chemgeo.2016.06.027     URL    
[19] Bau M, Koschinsky A, Dulski P, et al.Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1 709-1 725.
Bau M, Koschinsky A, Dulski P, et al.Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1 709-1 725.
[20] Shields G A, Webb G E.Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 2004, 204(1/2): 103-107.
doi: 10.1016/j.chemgeo.2003.09.010     URL    
Shields G A, Webb G E.Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 2004, 204(1/2): 103-107.
doi: 10.1016/j.chemgeo.2003.09.010     URL    
[21] Zhang J, Nozaki Y.Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4 631-4 644.
Zhang J, Nozaki Y.Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4 631-4 644.
[22] García M G, Lecomte K L, Pasquini A I, et al.Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina)[J]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5 355-5 368.
García M G, Lecomte K L, Pasquini A I, et al.Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina)[J]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5 355-5 368.
[23] Frimmel H E.On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation[J]. Precambrian Research, 2010, 182(4): 239-253.
doi: 10.1016/j.precamres.2010.01.003     URL    
Frimmel H E.On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation[J]. Precambrian Research, 2010, 182(4): 239-253.
doi: 10.1016/j.precamres.2010.01.003     URL    
[24] Byrne R H, Kim K H.Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2 645-2 656.
doi: 10.1016/0016-7037(90)90002-3     URL    
Byrne R H, Kim K H.Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2 645-2 656.
doi: 10.1016/0016-7037(90)90002-3     URL    
[25] Elderfield H, Upstill-Goddard R, Sholkovitz E R.The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991.
Elderfield H, Upstill-Goddard R, Sholkovitz E R.The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991.
[26] Goldstein S J, Jacobsen S B.Rare earth elements in river waters[J]. Earth & Planetary Science Letters, 1988, 89(1): 35-47.
doi: 10.1016/0012-821X(88)90031-3     URL    
Goldstein S J, Jacobsen S B.Rare earth elements in river waters[J]. Earth & Planetary Science Letters, 1988, 89(1): 35-47.
doi: 10.1016/0012-821X(88)90031-3     URL    
[27] Lawrence M G, Greig A, Collerson K D, et al.Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
doi: 10.1007/s10498-005-4471-8     URL    
Lawrence M G, Greig A, Collerson K D, et al.Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
doi: 10.1007/s10498-005-4471-8     URL    
[28] Bau M, Dulski P.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
Bau M, Dulski P.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[29] Wheat C G, Mottl M J, Rudnicki M.Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3 693-3 705.
doi: 10.1016/S0016-7037(02)00894-3     URL    
Wheat C G, Mottl M J, Rudnicki M.Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3 693-3 705.
doi: 10.1016/S0016-7037(02)00894-3     URL    
[30] Douville E, Bienvenu P, Charlou J L, et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.
doi: 10.1016/S0016-7037(99)00024-1     URL    
Douville E, Bienvenu P, Charlou J L, et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.
doi: 10.1016/S0016-7037(99)00024-1     URL    
[31] Meyer E E, Quicksall A N, Landis J D, ,et al. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition[J].[J]. Precambrian Research, 2012, 192/195: 89-106.
Meyer E E, Quicksall A N, Landis J D, ,et al. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition[J].[J]. Precambrian Research, 2012, 192/195: 89-106.
[32] Wang Q, Lin Z, Chen D.Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China[J]. Sedimentary Geology, 2014, 304: 59-70.
Wang Q, Lin Z, Chen D.Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China[J]. Sedimentary Geology, 2014, 304: 59-70.
[33] Jarvis K E, Gray A L, Mccurdy E.Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion[J]. Journal of Analytical Atomic Spectrometry, 1989, 4(8): 743-747.
Jarvis K E, Gray A L, Mccurdy E.Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion[J]. Journal of Analytical Atomic Spectrometry, 1989, 4(8): 743-747.
[34] Zhong S, Mucci A.Partitioning of Rare Earth Elements (REEs) between calcite and seawater solutions at 25 ℃ and 1 atm, and high dissolved REE concentrations[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 443-453.
Zhong S, Mucci A.Partitioning of Rare Earth Elements (REEs) between calcite and seawater solutions at 25 ℃ and 1 atm, and high dissolved REE concentrations[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 443-453.
[35] Nozaki Y, Zhang J, Amakawa H.The fractionation between Y and Ho in the marine environment[J]. Earth & Planetary Science Letters, 1997, 148(1): 329-340.
doi: 10.1016/S0012-821X(97)00034-4     URL    
Nozaki Y, Zhang J, Amakawa H.The fractionation between Y and Ho in the marine environment[J]. Earth & Planetary Science Letters, 1997, 148(1): 329-340.
doi: 10.1016/S0012-821X(97)00034-4     URL    
[36] Baar H J W D, Bacon M P, Brewer P G, et al.Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1 943-1 959.
doi: 10.1016/0016-7037(85)90089-4     URL    
Baar H J W D, Bacon M P, Brewer P G, et al.Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1 943-1 959.
doi: 10.1016/0016-7037(85)90089-4     URL    
[37] Liu X, Byrne R H.Rare earth and yttrium phosphate solubilities in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1 625-1 633.
doi: 10.1016/S0016-7037(97)00037-9     URL    
Liu X, Byrne R H.Rare earth and yttrium phosphate solubilities in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1 625-1 633.
doi: 10.1016/S0016-7037(97)00037-9     URL    
[38] Hill I G, Worden R H, Meighan I G.Yttrium: The immobility-mobility transition during basaltic weathering[J]. Geology, 2000, 28(10): 923-926.
doi: 10.1130/0091-7613(2000)28<923:YTITDB>2.0.CO;2     URL    
Hill I G, Worden R H, Meighan I G.Yttrium: The immobility-mobility transition during basaltic weathering[J]. Geology, 2000, 28(10): 923-926.
doi: 10.1130/0091-7613(2000)28<923:YTITDB>2.0.CO;2     URL    
[39] Wu Yijing, Fan Daidu, Yin Ping, et al.Research advances in sedimentary records of coastal bottom-water Hypoxia[J]. Advances in Earth Science, 2016, 31(6):567-580.
doi: 10.11867/j.issn.1001-8166.2016.06.0567.    
Wu Yijing, Fan Daidu, Yin Ping, et al.Research advances in sedimentary records of coastal bottom-water Hypoxia[J]. Advances in Earth Science, 2016, 31(6):567-580.
[吴伊婧, 范代读, 印萍,等. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6):567-580.]
doi: 10.11867/j.issn.1001-8166.2016.06.0567.    
[吴伊婧, 范代读, 印萍,等. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6):567-580.]
doi: 10.11867/j.issn.1001-8166.2016.06.0567.    
[40] Baar H J W D, Schijf J, Byrne R H. Solution chemistry of the rare earth elements in seawater[J]. European Journal of Solid State & Inorganic Chemistry, 1991, 28: 357-373.
Baar H J W D, Schijf J, Byrne R H. Solution chemistry of the rare earth elements in seawater[J]. European Journal of Solid State & Inorganic Chemistry, 1991, 28: 357-373.
[41] Bodin S, Godet A, Westermann S, et al.Secular change in northwestern Tethyan water-mass oxygenation during the late Hauterivian-early Aptian[J]. Earth & Planetary Science Letters, 2013, 374(4): 121-131.
Bodin S, Godet A, Westermann S, et al.Secular change in northwestern Tethyan water-mass oxygenation during the late Hauterivian-early Aptian[J]. Earth & Planetary Science Letters, 2013, 374(4): 121-131.
[42] Alibo D S, Nozaki Y.Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
doi: 10.1016/S0016-7037(98)00279-8     URL    
Alibo D S, Nozaki Y.Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
doi: 10.1016/S0016-7037(98)00279-8     URL    
[43] Elderfield H, Hawkesworth C J, Greaves M J, et al.Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513-528.
Elderfield H, Hawkesworth C J, Greaves M J, et al.Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513-528.
[44] Birgel D, Feng D, Roberts H H, et al.Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico[J]. Chemical Geology, 2011, 285(1/2/3/4): 82-96.
Birgel D, Feng D, Roberts H H, et al.Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico[J]. Chemical Geology, 2011, 285(1/2/3/4): 82-96.
[45] Lin Zhijia, Chen Duofu, Liu Qian.Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2008, 27(1): 72-80.
doi: 10.3969/j.issn.1007-2802.2008.01.012     URL    
Lin Zhijia, Chen Duofu, Liu Qian.Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2008, 27(1): 72-80.
[林治家, 陈多福, 刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报, 2008, 27(1):72-80.]
doi: 10.3969/j.issn.1007-2802.2008.01.012     URL    
[林治家, 陈多福, 刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报, 2008, 27(1):72-80.]
doi: 10.3969/j.issn.1007-2802.2008.01.012     URL    
[46] Zhao Laishi, Wu Yuanbao, Hu Zhaochu, et al.Trace element compositions in conodont phosphates responses to biotic extinction event:A case study for main act of global boundary Stratotype Section and point of the Permian-Triassic[J]. Earth ScienceJournal of China University of Geosciences, 2009, 34(5): 725-732.
Zhao Laishi, Wu Yuanbao, Hu Zhaochu, et al.Trace element compositions in conodont phosphates responses to biotic extinction event:A case study for main act of global boundary Stratotype Section and point of the Permian-Triassic[J]. Earth ScienceJournal of China University of Geosciences, 2009, 34(5): 725-732.
[赵来时, 吴元保, 胡兆初, 等.牙形石微量元素对生物绝灭事件的响应:以二叠—三叠系全球层型剖面第一幕绝灭事件为例[J]. 地球科学——中国地质大学学报, 2009, 34(5):725-732.]
[赵来时, 吴元保, 胡兆初, 等.牙形石微量元素对生物绝灭事件的响应:以二叠—三叠系全球层型剖面第一幕绝灭事件为例[J]. 地球科学——中国地质大学学报, 2009, 34(5):725-732.]
[47] Xu Ran, Gong Yiming, Tan Xuejiao, et al.Differences between the Upper and Lower Kellwasser events and productivity variations during the Late Devonian Frasnian-Famennian transition in Yangdi of Guilin,South China[J]. Earth ScienceJournal of China University of Geosciences, 2015, 40(2): 357-371.
URL    
Xu Ran, Gong Yiming, Tan Xuejiao, et al.Differences between the Upper and Lower Kellwasser events and productivity variations during the Late Devonian Frasnian-Famennian transition in Yangdi of Guilin,South China[J]. Earth ScienceJournal of China University of Geosciences, 2015, 40(2): 357-371.
[徐冉,龚一鸣,谭雪娇,等. 广西桂林杨堤晚泥盆世弗拉期—法门期之交上、下Kellwasser事件的差异与海洋生产力变化[J].地球科学——中国地质大学学报,2015, 40(2):357-371.]
URL    
[徐冉,龚一鸣,谭雪娇,等. 广西桂林杨堤晚泥盆世弗拉期—法门期之交上、下Kellwasser事件的差异与海洋生产力变化[J].地球科学——中国地质大学学报,2015, 40(2):357-371.]
URL    
[48] Nozaki Y.Rare earth elements and their isotopes in the ocean[J]. Encyclopedia of Ocean Sciences, 2001, 4: 2 354-2 366.
doi: 10.1006/rwos.2001.0284     URL    
Nozaki Y.Rare earth elements and their isotopes in the ocean[J]. Encyclopedia of Ocean Sciences, 2001, 4: 2 354-2 366.
doi: 10.1006/rwos.2001.0284     URL    
[49] Song H, Wignall P B, Tong J, ,et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition.[J].Earth and Planetary Science Letters, 2012, 353/354: 12-21.
Song H, Wignall P B, Tong J, ,et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition.[J].Earth and Planetary Science Letters, 2012, 353/354: 12-21.
[50] Zhao Y, Zheng Y, Chen F.Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362.
Zhao Y, Zheng Y, Chen F.Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362.
[51] Chen Linying, Li Chongying, Chen Duofu.Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2012, 31(2): 177-183.
doi: 10.3969/j.issn.1007-2802.2012.02.012     URL    
Chen Linying, Li Chongying, Chen Duofu.Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2012, 31(2): 177-183.
[陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177-183.]
doi: 10.3969/j.issn.1007-2802.2012.02.012     URL    
[陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177-183.]
doi: 10.3969/j.issn.1007-2802.2012.02.012     URL    
[52] Ellingboe J, Wilson J.A quantitative separation of non-carbonate minerals from carbonate minerals[J]. Journal of Sedimentary Research, 1964,(2): 412-418.
Ellingboe J, Wilson J.A quantitative separation of non-carbonate minerals from carbonate minerals[J]. Journal of Sedimentary Research, 1964,(2): 412-418.
[53] Chen D F, Huang Y Y, Yuan X L, et al.Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5): 613-621.
Chen D F, Huang Y Y, Yuan X L, et al.Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5): 613-621.
[54] Rongemaille E, Bayon G, Pierre C, et al.Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 208(3): 196-206.
doi: 10.1016/j.chemgeo.2011.05.001     URL    
Rongemaille E, Bayon G, Pierre C, et al.Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 208(3): 196-206.
doi: 10.1016/j.chemgeo.2011.05.001     URL    
[55] Zhang K, Zhu X, Yan B.A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91.
doi: 10.1016/j.chemgeo.2015.07.027     URL    
Zhang K, Zhu X, Yan B.A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91.
doi: 10.1016/j.chemgeo.2015.07.027     URL    
[56] Sholkovitz E R.The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34.
doi: 10.1007/BF01025229     URL    
Sholkovitz E R.The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34.
doi: 10.1007/BF01025229     URL    
[57] Chen L, Liu Y, Hu Z, et al.Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3/4): 283-295.
Chen L, Liu Y, Hu Z, et al.Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3/4): 283-295.
[58] Nagarajan R, Madhavaraju J, Armstrong-Altrin J S,et al. Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India[J]. Geosciences Journal, 2011, 15(1): 9-25.
doi: 10.1007/s12303-011-0005-0    
Nagarajan R, Madhavaraju J, Armstrong-Altrin J S,et al. Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India[J]. Geosciences Journal, 2011, 15(1): 9-25.
doi: 10.1007/s12303-011-0005-0    
[59] Baar H J W D, German C R, Elderfield H, et al.Rare earth element distributions in anoxic waters of the Cariaco Trench?[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1 203-1 219.
doi: 10.1016/0016-7037(88)90275-X     URL    
Baar H J W D, German C R, Elderfield H, et al.Rare earth element distributions in anoxic waters of the Cariaco Trench?[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1 203-1 219.
doi: 10.1016/0016-7037(88)90275-X     URL    
[60] Zaky A H, Azmy K, Brand U, et al.Rare earth elements in deep-water articulated brachiopods: An evaluation of seawater mass[J]. Chemical Geology, 2016, 435: 22-34.
doi: 10.1016/j.chemgeo.2016.04.016     URL    
Zaky A H, Azmy K, Brand U, et al.Rare earth elements in deep-water articulated brachiopods: An evaluation of seawater mass[J]. Chemical Geology, 2016, 435: 22-34.
doi: 10.1016/j.chemgeo.2016.04.016     URL    
[61] Bau M, Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
Bau M, Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[62] Delpomdor F, Blanpied C, Virgone A, et al.Paleoenvironments in Meso-Neoproterozoic carbonates of the Mbuji-Mayi Supergroup (Democratic Republic of Congo)-Microfacies analysis combined with C-O-Sr isotopes, major-trace elements and REE+Y distributions[J]. Journal of African Earth ScienceJournal of China University of Geosciencess, 2013, 88: 72-100.
Delpomdor F, Blanpied C, Virgone A, et al.Paleoenvironments in Meso-Neoproterozoic carbonates of the Mbuji-Mayi Supergroup (Democratic Republic of Congo)-Microfacies analysis combined with C-O-Sr isotopes, major-trace elements and REE+Y distributions[J]. Journal of African Earth ScienceJournal of China University of Geosciencess, 2013, 88: 72-100.
[63] Shields G, Stille P.Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
Shields G, Stille P.Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
[64] Li R.Deciphering the diagenetic alteration degree in thrombolites across the Permian-Triassic boundary and the evaluation of REY as a proxy of palaeoseawater[J]. Journal of Asian Earth ScienceJournal of China University of Geosciencess, 2017, 147: 37-49.
Li R.Deciphering the diagenetic alteration degree in thrombolites across the Permian-Triassic boundary and the evaluation of REY as a proxy of palaeoseawater[J]. Journal of Asian Earth ScienceJournal of China University of Geosciencess, 2017, 147: 37-49.
[65] Eltom H A, Abdullatif O M, Makkawi M H, et al.Rare earth element geochemistry of shallow carbonate outcropping strata in Saudi Arabia: Application for depositional environments prediction[J]. Sedimentary Geology, 2017, 348: 51-68.
Eltom H A, Abdullatif O M, Makkawi M H, et al.Rare earth element geochemistry of shallow carbonate outcropping strata in Saudi Arabia: Application for depositional environments prediction[J]. Sedimentary Geology, 2017, 348: 51-68.
[66] Banner J L, Hanson G N.Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3 123-3 137.
Banner J L, Hanson G N.Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3 123-3 137.
[67] Webb G E, Kamber B S.Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1 557-1 565.
doi: 10.1016/S0016-7037(99)00400-7     URL    
Webb G E, Kamber B S.Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1 557-1 565.
doi: 10.1016/S0016-7037(99)00400-7     URL    
[68] Bau M, Alexander B.Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the "Great Oxidation Event"[J]. South African Journal of Geology, 2006, 109(1/2): 81-86.
Bau M, Alexander B.Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the "Great Oxidation Event"[J]. South African Journal of Geology, 2006, 109(1/2): 81-86.
[69] Lin Z, Wang Q, Feng D, et al.Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes[J]. Sedimentary Geology, 2011, 242(1): 71-79.
Lin Z, Wang Q, Feng D, et al.Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes[J]. Sedimentary Geology, 2011, 242(1): 71-79.
[70] Wang Rui, Yu Kefu, Wang Yinghui, et al.The diagenesis of coral Reefs[J]. Advances in Earth Science, 2017, 32(3):221-233.
URL    
Wang Rui, Yu Kefu, Wang Yinghui, et al.The diagenesis of coral Reefs[J]. Advances in Earth Science, 2017, 32(3):221-233.
[王瑞, 余克服, 王英辉,等. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3):221-233.]
URL    
[王瑞, 余克服, 王英辉,等. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3):221-233.]
URL    
[71] Webb G E, Nothdurft L D, Kamber B S, et al.Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite[J]. Sedimentology, 2009, 56(5): 1 433-1 463.
Webb G E, Nothdurft L D, Kamber B S, et al.Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite[J]. Sedimentology, 2009, 56(5): 1 433-1 463.
[72] Frimmel H E, Lane K.Geochemistry of carbonate beds in the Neoproterozoic Rosh Pinah Formation, Namibia: Implications on depositional setting and hydrothermal ore formation[J]. South African Journal of Geology, 2005, 108(1): 5-18.
Frimmel H E, Lane K.Geochemistry of carbonate beds in the Neoproterozoic Rosh Pinah Formation, Namibia: Implications on depositional setting and hydrothermal ore formation[J]. South African Journal of Geology, 2005, 108(1): 5-18.
[73] Chen J, Algeo T J, Zhao L, et al.Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181-202.
Chen J, Algeo T J, Zhao L, et al.Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181-202.
[74] Brand U, Veizer J.Chemical diagenesis of a multicomponent carbonate system-1. Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4): 1 219-1 236.
Brand U, Veizer J.Chemical diagenesis of a multicomponent carbonate system-1. Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4): 1 219-1 236.
[75] Bartley J K, Semikhatov M A, Kaufman A J, et al.Global events across the Mesoproterozoic-Neoproterozoic boundary: C and Sr isotopic evidence from Siberia[J]. Precambrian Research, 2001, 111(1): 165-202.
Bartley J K, Semikhatov M A, Kaufman A J, et al.Global events across the Mesoproterozoic-Neoproterozoic boundary: C and Sr isotopic evidence from Siberia[J]. Precambrian Research, 2001, 111(1): 165-202.
[76] Tong H, Wang Q, Peckmann J, et al.Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: A case study on Cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China[J]. Chemical Geology, 2016, 444: 71-82.
Tong H, Wang Q, Peckmann J, et al.Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: A case study on Cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China[J]. Chemical Geology, 2016, 444: 71-82.
[77] German C R, Elderfield H.Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
doi: 10.1029/PA005i005p00823     URL    
German C R, Elderfield H.Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
doi: 10.1029/PA005i005p00823     URL    
[78] Tobia F H, Aqrawi A M.Geochemistry of rare earth elements in carbonate rocks of the Mirga Mir Formation (Lower Triassic), Kurdistan Region, Iraq[J]. Arabian Journal of Geosciences, 2016, 9(4):259.
Tobia F H, Aqrawi A M.Geochemistry of rare earth elements in carbonate rocks of the Mirga Mir Formation (Lower Triassic), Kurdistan Region, Iraq[J]. Arabian Journal of Geosciences, 2016, 9(4):259.
[79] Zhang Mingzheng, Peng Songbai, Zhang Li, et al.New recognition of carbonate nodules genesis in Sinian Doushantuo Formation in Zigui Area and its geological implication[J]. Earth ScienceJournal of China University of Geosciences, 2016, 41(12):1 977-1 994.
doi: 10.3799/dqkx.2016.138     URL    
Zhang Mingzheng, Peng Songbai, Zhang Li, et al.New recognition of carbonate nodules genesis in Sinian Doushantuo Formation in Zigui Area and its geological implication[J]. Earth ScienceJournal of China University of Geosciences, 2016, 41(12):1 977-1 994.
[张明正, 彭松柏, 张利, 等.秭归地区震旦系陡山沱组碳酸盐岩结核成因新认识及其地质意义[J].地球科学——中国地质大学学报, 2016, 41(12):1 977-1 994.]
doi: 10.3799/dqkx.2016.138     URL    
[张明正, 彭松柏, 张利, 等.秭归地区震旦系陡山沱组碳酸盐岩结核成因新认识及其地质意义[J].地球科学——中国地质大学学报, 2016, 41(12):1 977-1 994.]
doi: 10.3799/dqkx.2016.138     URL    
[80] Zhang P, Hua H, Liu W.Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China[J]. Precambrian Research, 2014, 242: 96-111.
Zhang P, Hua H, Liu W.Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China[J]. Precambrian Research, 2014, 242: 96-111.
[81] Rodler A S, Frei R, Gaucher C, et al.Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia[J]. Precambrian Research, 2016, 286: 234-249.
Rodler A S, Frei R, Gaucher C, et al.Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia[J]. Precambrian Research, 2016, 286: 234-249.
[82] Tang D, Shi X, Wang X, et al.Extremely low oxygen concentration in mid-Proterozoic shallow seawaters[J]. Precambrian Research, 2016, 276: 145-157.
doi: 10.1016/j.precamres.2016.02.005     URL    
Tang D, Shi X, Wang X, et al.Extremely low oxygen concentration in mid-Proterozoic shallow seawaters[J]. Precambrian Research, 2016, 276: 145-157.
doi: 10.1016/j.precamres.2016.02.005     URL    
[83] Dolenec T, Lojen S, Ramov? A.The Permian-Triassic boundary in Western Slovenia (Idrijca Valley section): Magnetostratigraphy, stable isotopes, and elemental variations[J]. Chemical Geology, 2001, 175(1/2): 175-190.
Dolenec T, Lojen S, Ramovš A.The Permian-Triassic boundary in Western Slovenia (Idrijca Valley section): Magnetostratigraphy, stable isotopes, and elemental variations[J]. Chemical Geology, 2001, 175(1/2): 175-190.
[84] Fio K, Spangenberg J E, Vlahovi? I, et al.Stable isotope and trace element stratigraphy across the Permian-Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia[J]. Chemical Geology, 2010, 278(1/2): 38-57.
Fio K, Spangenberg J E, Vlahoviĉ I, et al.Stable isotope and trace element stratigraphy across the Permian-Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia[J]. Chemical Geology, 2010, 278(1/2): 38-57.
[85] Loope G R, Kump L R, Arthur M A.Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351: 195-208.
Loope G R, Kump L R, Arthur M A.Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351: 195-208.
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[6] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[7] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[8] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[9] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[10] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[11] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[12] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[13] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[14] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[15] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
阅读次数
全文


摘要