地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 276 -291. doi: 10.11867/j.issn.1001-8166.2017.03.0276

上一篇    下一篇

桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析
李向东( ), 阙易, 郇雅棋   
  1. 昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2016-11-09 修回日期:2017-02-01 出版日期:2017-03-20
  • 基金资助:
    国家自然科学基金面上项目“阿拉善地块东南缘与鄂尔多斯盆地西缘中、上奥陶统浊流演化及其与内波相互作用研究”(编号 41272119)资助

Analysis of Vertical Sedimentary Successions in the Lower Part of Kelimoli Formation, Middle Ordovician, Zhuozishan Area

Xiangdong Li( ), Yi Que, Yaqi Huan   

  1. School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2016-11-09 Revised:2017-02-01 Online:2017-03-20 Published:2017-03-20
  • About author:

    First author:Li Xiangdong (1973-), male, Lantian County, Shaanxi Province, Lecturer. Research areas include marine sedimentology.E-mail:Lixiangdong614@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study of the evolution of turbidity currents and its interaction with internal waves of Middle and Upper Ordovician on the southeastern margin of Alxa block and western margin of Ordos Basin”(No.41272119)

高旋回性薄层石灰岩一般沉积于斜坡和深水盆地环境中,良好地保存了有关天文旋回的信息,具有重要的研究意义。鄂尔多斯盆地西缘内蒙桌子山地区中奥陶统达瑞威尔阶克里摩里组下段发育韵律性极好的薄层石灰岩与页岩,是较为理想的研究层位。在详细的野外观察和测量的基础上,结合石灰岩稀土元素及其他相关微量元素测试结果,对克里摩里组下段薄层状石灰岩的垂向沉积序列进行详细分析,结果如下:① 薄层石灰岩由4种垂向序列(旋回束)组成,分别为向上变薄序列、向上变厚序列、双向序列和波动序列;② 在剖面上可划分出145个薄层石灰岩与极薄层页岩对、33个旋回束和7个超旋回束;③(La/Nd)N值和Mn/Fe值总的变化趋势一致,从下到上呈减小趋势,但波动较大;④ 稀土元素总量和铕异常值曲线具有良好的镜像关系,与(La/Nd)N值具有耦合关系;⑤ 石灰岩晶粒大小曲线、V/Cr和V/(V+Ni)值曲线形态相似,变化一致,总体上从下到上由小变大再变小,与(La/Nd)N值曲线总体上具有相似性,但局部常出现镜像关系。依据沉积序列的类型、在剖面上的分布及各参数在垂向上的关系,在已有研究成果基础上可以得出以下结论:① 双向序列可能受控于等深流强度(米兰柯维奇旋回),向上变薄序列与波动序列可能受控于海平面的变化,向上变厚序列可能受控于构造作用;② 受米兰柯维奇旋回控制的等深流作用贯穿整个沉积,反映的沉积时限不少于2.9 Ma;③ 垂向上沉积演化受控于次级沉积控制因素构造作用和海平面上升,两者在垂向上交替作用,共反映出2个构造活跃阶段。

There is significance to study high-frequency cyclicity thin-bedded limestone which deposited in carbonate ramp and deep-water basin for its well record of astronomic cycles. And there is an ideal section for these studies in the lower part of Kelimoli Formation, in Darriwilian Stage, Middle Ordovician of western Ordos Basin(Zhuozishan area in Inner Mongolia) for its well rhythmic alternations of thin-bedded limestones and mudstones. This work focused on detailed vertical sedimentary successions analysis of these thin-bedded limestones based on detailed field work, as well as the data of rare earth elements and other related trace elements in limestones. The results show as follows: ① there are four types of sedimentary successions(bundles) in thin-bedded limestones, including thinning-upward succession, thickening-upward succession, bidirectional succession(thickening- and thinning-upward) and waving-upward succession; ② the section consists of 145 limestone-mudstone rhythmics, 33 bundles and 7 superbundles; ③ the variation in(La/Nd)N and Mn/Fe molar ratios of limestones along with depth have a similar trend which decreases from bottom to top in general, but have some anomalies distribution; ④ the variation in REE concentrations and Eu anomalies along with depth have a perfect enantiomorphous relationship as well as coupling with the molar ratios of(La/Nd)N; ⑤ the variation of crystal size, V/Cr and V/(V+Ni) molar ratios also have a similar trend which is increasing and then decreasing from bottom to top, and have some local enantiomorphous relationship with the molar ratios of(La/Nd)N in the overall similar distribution patterns. Some conclusion can be drawn according to the types of sedimentary successions and its distribution in profile as well as the ratios of some geochemical parameter along depth based on previous works. These include: ① thickening-upward and bidirectional successions maybe reflect the intensity of tectonism and contour current which is controlled by Milankovitch cycle respectively, and the rising of sea level may be was responsible both for the thinning-upward and waving-upward successions; ② the intensity of contour current which is controlled by Milankovitch cycle was acted throughout the depositions, and the range of deposition time is not less than 2.9 Ma; ③ the vertical sedimentary evolution is perhaps controlled by the alternating of tectonism and rising sea levels, and the section suggests two tectonic stages.

中图分类号: 

图1 鄂尔多斯盆地西缘中奥陶世达瑞威尔期古地理略图 [ 12 ]
Fig.1 Sketch showing paleogeography of Darriwilian in Middle Ordovician, western Ordos Basin [ 12 ]
表1 石峡谷剖面克里摩里组石灰岩稀土及相关微量元素分析结果
Table 1 REE and other trace elements concentrations for limestones of Kelimoli Formation, Shixiagu Section
编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE (Eu/
Eu*)N
(La/
Nd)N
Fe Mn V Cr Ni Mn/Fe V/Cr V/
(V+Ni)
10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-2 10-6 10-6 10-6 10-6 10-4
28-1 4.71 9.02 1.01 3.84 0.67 0.15 0.66 0.1 0.52 0.1 0.29 0.04 0.26 0.04 3.07 21.41 1.12 1.06 0.2 87.8 6.61 6.47 5.73 439 1.02 0.54
28-2 4.43 8.3 0.94 3.41 0.59 0.15 0.57 0.08 0.48 0.09 0.25 0.04 0.22 0.03 2.71 19.58 1.32 1.13 0.19 79.8 5.67 6.96 3.86 420 0.81 0.59
28-3 6.51 13 1.58 6.3 1.13 0.26 1.05 0.15 0.84 0.15 0.4 0.06 0.37 0.06 4.63 31.86 1.2 0.9 0.4 123 8.64 8.79 5.4 308 0.98 0.62
28-4 7.89 15.5 1.89 7.38 1.26 0.27 1.19 0.18 0.91 0.18 0.51 0.07 0.47 0.07 5.4 37.77 1.09 0.93 0.24 111 9.34 8 4.95 463 1.17 0.65
28-5 5.7 11.8 1.45 5.6 0.96 0.24 0.9 0.13 0.73 0.13 0.37 0.05 0.29 0.05 3.89 28.40 1.3 0.88 0.25 115 6.3 6.97 5.82 460 0.90 0.52
28-6 4.33 8.16 0.93 3.31 0.64 0.13 0.57 0.09 0.48 0.09 0.27 0.1 0.24 0.04 2.74 19.38 1.04 1.13 0.21 92.5 5.96 4.39 3.72 440 1.36 0.62
28-7 2.75 4.75 0.51 1.95 0.3 0.09 0.32 0.05 0.24 0.05 0.14 0.02 0.11 0.02 1.52 11.30 1.45 1.22 0.14 74.3 4.02 3.88 2.31 531 1.04 0.64
28-8 4.9 9.48 1.12 4.62 0.78 0.2 0.71 0.11 0.59 0.12 0.33 0.05 0.27 0.04 3.51 23.32 1.31 0.92 0.6 202 6.54 6.31 5.42 337 1.04 0.55
28-12 6.15 11.6 1.35 5.43 0.9 0.22 0.9 0.12 0.64 0.13 0.35 0.04 0.28 0.05 3.82 28.16 1.27 0.98 0.28 110 9.84 7.73 3.74 393 1.27 0.72
28-13 3.33 6.31 0.71 2.67 0.45 0.13 0.44 0.06 0.33 0.07 0.18 0.02 0.15 0.02 1.9 14.87 1.51 1.08 0.2 76.9 5.64 5.42 3.25 385 1.04 0.63
28-14 4.04 8.15 0.95 3.69 0.67 0.17 0.6 0.09 0.49 0.1 0.27 0.04 0.22 0.03 2.7 19.51 1.32 0.95 0.23 98 8.52 6.36 3.77 426 1.34 0.69
28-15 4.94 10.2 1.18 4.77 0.78 0.21 0.79 0.11 0.62 0.11 0.31 0.05 0.25 0.04 3.23 24.36 1.38 0.9 0.33 100 8.51 7.28 4.63 303 1.17 0.65
28-16 9.05 20.2 2.34 9.8 1.94 0.35 1.8 0.29 1.63 0.32 0.91 0.12 0.79 0.12 8.19 49.66 0.91 0.8 1.13 329 12.6 10.6 6.53 291 1.19 0.66
28-17 7.1 15.3 1.79 7.17 1.32 0.27 1.13 0.18 0.89 0.17 0.5 0.07 0.41 0.06 4.91 36.36 1.06 0.86 0.3 94.6 9.49 8.27 4.04 315 1.15 0.70
28-18 7.28 15.5 1.9 7.44 1.31 0.3 1.22 0.17 0.93 0.19 0.51 0.07 0.43 0.06 5.12 37.31 1.2 0.85 0.43 118 8.34 7.53 6 274 1.11 0.58
28-19 6.38 13.7 1.62 6.54 1.12 0.24 1.04 0.15 0.83 0.15 0.44 0.06 0.39 0.06 4.53 32.72 1.12 0.85 0.39 109 9.32 7.9 7.06 279 1.18 0.57
28-20 5.84 12.4 1.47 5.96 0.99 0.24 0.92 0.14 0.69 0.15 0.41 0.06 0.37 0.06 4.13 29.70 1.24 0.84 0.3 125 6.25 6.29 3.99 417 0.99 0.61
28-21 7.3 15.5 1.89 7.5 1.32 0.31 1.21 0.18 0.93 0.18 0.52 0.07 0.44 0.06 5.34 37.41 1.22 0.84 0.42 104 8 7.15 4.84 248 1.12 0.62
28-22 6.79 13.2 1.58 6.25 1.07 0.25 1.08 0.15 0.79 0.16 0.45 0.07 0.42 0.06 4.45 32.32 1.2 0.94 0.4 98.6 9.01 8.82 6.81 247 1.02 0.57
图2 克里摩里组薄层石灰岩序列野外照片
(a)单层厚度向上变薄序列;(b)单层厚度向上变厚序列;(c)单层厚度向上变厚再变薄序列;(d)单层厚度向上呈波动序列,箭头所示详见正文
Fig.2 Photos showing sedimentary sequences of thin-bedded limestone in Kelimoli Formation
(a)Thinning-upward succession in thin-bedded limestone;(b)Thickening-upward succession in thin-bedded limestone;(c)Thickening-and thinning-upward succession in thin-bedded limestone;(d)Waving-upward succession in thin-bedded limestone, see text for details
图3 克里摩里组下段薄层石灰岩地球化学参数剖面图
Fig.3 Geochemical profile for thin-bedded limestone in the lower part of Kelimoli Formation
表2 克里摩里组下段薄层状石灰岩旋回划分表
Table 2 The cyclicities of thin-bedded limestone in the lower part of Kelimoli Formation

层厚
/cm
旋回束划分 超旋回束划分 控制
因素

层厚
/cm
旋回束划分 超旋回束划分 控制
因素
编号 厚度
/cm
特点 编号 厚度
/cm
特点 编号 厚度
/cm
特点 编号 厚度
/cm
特点
38 5 10 - - 2 166 向上变薄序列转化为向上变厚序列 构造作用主控 76 9 18 - - 5 - - 海平面变化主控
37 9 9 20 变厚 75 4.5 17 35.5 变薄 4 226 双向到向上变薄序列
36 4 74 7
35 3 73 8
34 4 72 16
33 8.5 8 22 变厚 71 5 16 60 变薄
32 5 70 10
31 5 69 22
30 3.5 68 23
29 4 7 22.5 变薄 海平面主控 67 7 15 27 变薄
28 4 66 6
27 5.5 65 4
26 9 64 10
25 6 6 26 变薄 63 11 14 36 变厚
24 7 62 3
23 13 61 12
22 6 5 23 变薄 60 10
21 7 59 20 * * *
20 5 58 4 13 47 双向
19 10 57 6
18 120 * * * * * * 56 8
17 11 4 40 变薄 1 135 以向上变薄序列为主 55 14
16 12 54 3
15 17 53 12
14 9 3 26 波动 52 120 * * * * * * 构造作用主控
13 4 51 15 12 62 变厚 3 108 波动到向上变厚
12 8 50 11
11 5 49 18
10 5 2 32 变薄 48 10
9 6 47 8
8 9 46 16 11 46 波动
7 12 45 8
6 4 1 36.5 双向 44 15
5 9 43 7
4 8.5 42 120 * * * * * *
3 7 41 30 10 52 变厚 2 - -
2 8 40 10
1 12 39 7

层厚
/cm
旋回束划分 超旋回束划分 控制
因素

层厚
/cm
旋回束划分 超旋回束划分 控制
因素
编号 厚度
/cm
特点 编号 厚度
/cm
特点 编号 厚度
/cm
特点 编号 厚度
/cm
特点
113 7 26 50 变薄 6 265 四种垂向序列交替出现 构造作用与海平面变化综合控制
112 18 149 8 33 44 波动 7 345 以波动序列为主 海平面变化主控
111 21 148 6
110 9 25 53 波动 147 6
109 13 146 3
108 12 145 7
107 4 144 6
106 12 143 8
105 3 142 5 32 38 双向
104 14 24 40 变厚 141 5
103 11 140 14
102 6 139 5
101 9 138 3 31 50 波动
100 16 23 57 双向 137 11
99 21 136 5
98 13 135 10
97 7 134 9
96 27 22 60.5 变厚 5 232 以向上变薄序列为主 海平面变化主控 133 12
95 18 132 8 30 95 变薄
94 8.5 131 13
93 7 130 17
92 4 21 46.5 变薄 129 26
91 6.5 128 31
90 16 127 3 29 41 双向
89 20 126 13
88 12 20 71 变薄 125 15
87 13 124 10
86 21 123 15 28 77 波动
85 25 122 16
84 4 19 34 变薄 121 16
83 3 120 17
82 9 119 13
81 8 118 26 27 65 变厚 6 - - -
80 10 117 22
79 6 18 34 双向 116 9
78 6 115 8
77 13 114 4 26 - -
图4 克里摩里组薄层石灰岩垂向序列及相互关系
(a) 双向序列:受米兰柯维奇旋回控制的基本沉积旋回;(b)向上变薄序列:受3级海平面上升影响的沉积旋回;(c) 波动序列:受4级海平面振荡影响的沉积旋回;(d)向上变厚序列:受构造作用影响的沉积旋回
Fig.4 Plots showing sedimentary sequences and its relationships of thin-bedded limestone in Kelimoli Formation
(a) Bidirectional succession:Fundamental sedimentary succession controlled by Milankovitch cycle;(b) Thinning-up succession:Sedimentary succession effected by 3rd-order sea-level rise;(c) Waving-upward succession:Sedimentary succession effected by oscillation of 4rd-order sea-level;(d) Thickening-up succession:Sedimentary succession effected by tectonism
图5 克里摩里组薄层石灰岩沉积演化概念模式图
A.开始海侵阶段;B.变深阶段;C.转换阶段;D.淹没阶段;E.浅化阶段;F.“静态”浅水阶段;CCD.碳酸盐补偿深度
Fig.5 Conceptual model to illustrate the evolution of sedentary deposition of thin-bedded limestone in Kelimoli Formation
A.Flooding phase; B.Deepening phase; C.Transitional phase; D.Drowning phase; E.Shallowing phase; F.“Static” shallow water phase; CCD.Carbonate Compensation Depth
[1] Pasquier J B, Strasser A.Platform-to-basin correlation by high-resolution sequence stratigraphy and cyclostratigraphy(Berriasian, Switzerland and France)[J].Semimentology, 1997, 44(6): 1 071-1 092.
[2] Mawson M, Tucker M.High-frequency cyclicity(Milankovitch and millennial-scale) in slope-apron carbonates: Zechstein(Upper Permian), North-east England[J].Semimentology, 2009, 56(6): 1 905-1 936.
[3] Bádenas B, Aurell M, Dan Bosence D.Continuity and facies heterogeneities of shallow carbonate ramp cycles(Sinemurian, Lower Jurassic, North-east Spain)[J].Semimentology, 2010, 57(4): 1 021-1 048.
[4] Kietzmann D A, Palma R M, Riccardi A C, et al.Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp(Vaca Muerta Formation): A misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina[J].Sedimentary Geology, 2014, 302: 64-86,doi:10.1016/j.sedgeo.2014.01.002.
[5] Hersi O S, Abbasi I A, Al-Harthy A.Sedimentology, rhythmicity and basin-fill architecture of a carbonate ramp depositional system with intermittent terrigenous influx: The Albian Kharfot Formation of the Jeza-Qamar Basin, Dhofar, Southern Oman[J].Sedimentary Geology, 2016, 331: 114-131,doi:10.1016/j.sedgeo.2015.11.001.
[6] Schwarz E, Veiga G D, Trentini G Á, et al.Climatically versus eustatically controlled, sediment-supply-driven cycles: Carbonate-siliciclastic, high-frequency sequences in the Valanginian of the Neuquén Basin(Argentina)[J].Journal of Sedimentary Research, 2016, 86(4): 312-335.
[7] Schwarzacher W.The stratification and cyclicity of the Dachstein Limestone in Lofer, Leogang and Steinernes Meer(Northern Calcareous Alps, Austria)[J].Sedimentary Geology, 2005, 181(1/2): 93-106.
[8] Kietzmann D A, Palma R M, Llanos M P I.Cyclostratigraphy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession, Southern Mendoza, Argentina: Implications for the Jurassic-Cretaceous boundary in the Neuquén Basin[J].Sedimentary Geology, 2015, 315: 29-46,doi:10.1016/j.sedgeo.2014.10.002.
[9] Szulczewski M, Belka Z, Skompski S.The drowning of a carbonate platform: An example from the Devonian-Carboniferous of the southwestern Holy Cross Mountains, Poland[J].Sedimentary Geology, 1996, 106(1/4): 21-49.
[10] Nalin R, Nelson C S, Basso D, et al.Rhodolith-bearing limestones as transgressive marker beds: Fossil and modern examples from North Island, New Zealand[J].Semimentology, 2008, 55(2): 249-274.
[11] Luo Zhibo.Formation and evolution of early Precambrian continental crust in Alxa Block[J].Advances in Earth Science, 2015, 30(8): 878-890.
[罗志波. 阿拉善地块早前寒武纪大陆地壳的形成与演化[J].地球科学进展,2015,30(8):878-890.]
[12] Guo Yanru, Zhao Zhenyu, Xu Wanglin, et al.Sequence stratigraphy of the Ordovician system in the Ordos Basin[J].Acta Sedimentologica Sinica, 2014, 32(1): 44-60.
[郭彦如,赵振宇,徐旺林,等.鄂尔多斯盆地奥陶系层序地层格架[J].沉积学报,2014,32(1):44-60.]
[13] Han Pinlong, Zhang Yueqiao, Feng Qiao, et al.Petrofacies palaeogeography and evolution of Ordovician of Qilian Sea area in Ordos Basin[J].Geoscience, 2009, 23(5): 822-827.
[韩品龙,张月巧,冯乔,等.鄂尔多斯盆地祁连海域奥陶纪岩相古地理特征及演化[J].现代地质,2009,23(5):822-827.]
[14] Guo Yanru, Zhao Zhenyu, Fu Jinhua, et al.Equence lithofacies paleogeography of the Ordovician in Ordos Basin, China[J].Acta Petrolei Sinica, 2012, 33(Suppl.2): 95-109.
[郭彦如,赵振宇,付金华,等.鄂尔多斯盆地奥陶纪层序岩相古地理[J].石油学报,2012,33(增刊2):95-109.]
[15] Ma Zhanrong, Bai Haifeng, Liu Baoxian, et al.Lithofacies palaeogeography of the Middle-Late Ordovician Kelimoli and Wulalike ages in western Ordos area[J].Journal of Palaeogeography, 2013, 15(6): 751-764.
[马占荣,白海峰,刘宝宪,等.鄂尔多斯西部地区中—晚奥陶世克里摩里期—乌拉力克期岩相古地理[J].古地理学报,2013,15(6):751-764.]
[16] Wu Xingning, Sun Liuyi, Yu Zhou, et al.Lithofacies paleogeography of Ordovician in western Ordos Basin[J].Lithologic Reservoirs, 2015, 27(6): 87-96.
[吴兴宁,孙六一,于洲,等.鄂尔多斯盆地西部奥陶纪岩相古地理特征[J].岩性油气藏,2015,27(6):87-96.]
[17] Jin Huijuan, Sun Mingliang, Li Yuci.The “special” turbidite measure of the Middle Ordovician Series in Zhuozishan area, Inner Mongolia[J].Acta Sedimentologica Sinica, 2004, 23(1): 34-40.
[晋慧娟,孙明良,李育慈.内蒙古桌子山中奥陶统的“特殊”浊积岩系[J].沉积学报,2004,23(1):34-40.]
[18] Xiao Bin, He Youbin, Luo Jinxiong, et al.Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area, Inner Mongolia[J].Geological Review, 2014, 60(2): 321-331.
[肖彬,何幼斌,罗进雄,等.内蒙古桌子山中奥陶统拉什仲组深水水道沉积[J].地质论评,2014,60(2):321-331.]
[19] Li Rihui.Identification of contourites in Middle Ordovician Gongwushu Formation, Zhuozishan, and depositional environment[J].Oil and Gas Geology, 1994, 15(3): 235-240.
[李日辉. 桌子山中奥陶统公乌素组等积岩的确认及沉积环境[J].石油与天然气地质,1994,15(3):235-240.]
[20] Fei Anwei.Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation, Ordos Basin[J].Geological Journal of China Universities, 2001, 7(3): 278-287.
[费安玮. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境[J].高校地质学报,2001,7(3):278-287.]
[21] Fei Anwei.Trace fossil assemblages and palaeoenvironment of Middle Ordovician Gongwusu Formation, Zhuozishan, Inner Mongolia[J].Geoscience, 2000, 14(3): 366-372.
[费安玮. 桌子山中奥陶世公乌素组遗迹化石组合与古地理环境[J].现代地质,2000,14(3):366-372.]
[22] Sugitani K.Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block,Western Australia: Evidence for Archean seawater enriched in hydrothermally-derived iron and silica[J].Precambrian Research,1992, 57(1): 21-47.
[23] Alibo D S, Nozaki Y.Rare Earth Elements in seawater: Particle association, shalenormalization, and Ce oxidation[J].Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
[24] Zhao H, Jones B.Distribution and interpretation of rare earth elements and yttrium in Cenozoic dolostones and limestones on Cayman Brac, British West Indies[J].Sedimentary Geology, 2013, 284/285: 26-38.
[25] Wang zhengming. Geochemical indicators for diagnosing anoxic sedimentary environment[J].Acta Geologica Gansu, 2003, 12(2): 55-58.
[王争鸣. 缺氧沉积环境的地球化学标志[J].甘肃地质学报,2003,12(2):55-58.]
[26] Rimmer S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin(USA)[J].Chemical Geology, 2004, 206(3/4): 373-391.
[27] Lin Zhijia, Chen Duofu, Liu Qian.Geochemical indices for redox conditions of marine sediments[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80.
[林治家,陈多福,刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报,2008,27(1):72-80.]
[28] Chang Huajin, Chu Xuelei, Feng Lianjun, et al.Redox sensitive trace elements as paleoenvironments proxies[J].Geological Review, 2009, 55(1): 91-99.
[常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,2009,55(1):91-99.]
[29] Lei Bianjun, Fu Jinhua, Sun Fenjin, et al.Sequence stratigraphy of the Majiagou Formation, Ordos Basin: Sedimentation and early diagenesis related to eustatic sea-level changes[J].Journal of Stratigraphy, 2010, 34(2): 145-153.
[雷卞军,付金华,孙粉锦,等.鄂尔多斯盆地奥陶系马家沟组层序地层格架研究—兼论陆表海沉积作用和早期成岩作用对相对海平面变化的响应[J].地层学杂志,2010,34(2):145-153.]
[30] Su Zhongtang, Chen Hongde, Ouyang Zhengjian, et al.Sequence-based lithofacies and paleogeography of Majiagou Formation in Ordos Basin[J].Geology in China, 2012, 39(3): 623-633.
[苏中堂,陈洪德,欧阳征健,等.鄂尔多斯地区马家沟组层序岩相古地理特征[J].中国地质,2012,39(3):623-633.]
[31] Wang Qianyao, Feng Qiao, Wang Taiyuan, et al.Parasequence analysis of the field outcrop sections based on the sedimentary microfacies analysis: An example from the Ordovician Majiagou Formation in Linfen, eastern Ordos Basin[J].Sedimentary Geology and Tethyan Geology, 2014, 34(2): 18-28.
[王千遥,冯乔,王太元,等.基于沉积微相的野外露头剖面准层序分析——以鄂尔多斯盆地奥陶系临汾晋王坟剖面马家沟组为例[J].沉积与特提斯地质,2014,34(2):18-28.]
[32] Wang Qicong, Yan Zuo, Ning Bo, et al.Characteristics and genesis of leopard limestone of the Ordovician Majiagou Formation in Ordos Basin[J].Journal of Palaeogeography, 2016, 18(1): 39-48.
[王起琮,闫佐,宁博,等.鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因[J].古地理学报,2016,18(1):39-48.]
[33] Fei Anwei, Zhang Zhongtao.Bioturbation structures and paleoenvironment analysis of the Middle Ordovician at Jinsushan, Shaanxi[J].Earth Science, 2002, 27(6): 703-710.
[费安玮,张忠涛.陕西金栗山中奥陶统生物扰动构造与古环境分析[J].地球科学,2002,27(6):703-710.]
[34] Burgess P M.Identifying ordered strata: Evidence, methods, and meaning[J].Journal of Sedimentary Research, 2016, 86(3): 148-167.
[35] Prélat A, Hodgson D M, Flint S S.Evolution, architecture and hierarchy of distributary deep-water deposits: A high-resolution outcrop investigation from the Permian Karoo Basin, South Africa[J].Sedimentology, 2009, 56(7): 2 132-2 154.
[36] Corrochano D, Barba P, Colmenero J R.Glacioeustatic cyclicity of a Pennsylvanian carbonate platform in a foreland basin setting: An example from the Bachende Formation of the Cantabrian Zone(NW Spain)[J].Sedimentary Geology, 2012, 245-246: 76-93,doi:10.1016/j/sedgeo.2011.12.009.
[37] Tucker M E, Gallagher J, Leng M J.Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England[J].Sedimentary Geology, 2009, 214(1/4): 19-34.
[38] Chough S K, Kim S B, Chun S S.Sandstone/chert and laminated chert/black shale couplets, Cretaceous Uhangri Formation(southwest Korea): Depositional events in alkaline lake environments[J].Sedimentary Geology, 1996, 104(1/4): 227-242.
[39] Grecula M, Flint S S, Wickens H De V, et al.Upward-thickening patterns and lateral continuity of Permian sand-rich turbidite channel fills, Laingsburg Karoo, South Africa[J].Sedimentology, 2003, 50(5):831-853.
[40] Mutti E.Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group(South-central Pyrenees, Spain)[J].Semimentology, 1977, 24(1): 107-131.
[41] Grundvåg S A, Johannessen E P, Hellandhansen W, et al.Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen[J].Sedimentology, 2014, 61(2): 535-569.
[42] Marchès E, Mulder T, Gonthier E, et al.Perched lobe formation in the Gulf of Cadiz: Lnteractions between gravity processes and contour currents(Algarve Margin, Southern Portugal)[J].Sedimentary Geology, 2010, 229(3): 81-94.
[43] Lien T, Walker R G, Martinsen O J.Turbidites in the Upper Carboniferous Ross Formation, western Ireland: Reconstruction of a channel and spillover system[J].Sedimentology, 2003, 50(1): 113-148.
[44] James H, Trexler J, Cashman P H.A southern antler foredeep submarine fan: The Mississippian Eleana Formation, Nevada test site[J].Journal of Sedimentary Research, 1997, 67(6): 1 044-1 059.
[45] Cronin B T, Hurst A, Celik H, et al.Superb exposure of a channel, levee and overbank complex in an ancient deep-water slope environment[J].Sedimentary Geology, 2000, 132(3/4): 205-216.
[46] Buatois L A, Santiago N, Parra K, et al.Animal-substrate interactions in an Early Miocene wave-dominated tropical delta: Delineating environmental stresses and depositional dynamics(Tácata field, Eastern Venezuela)[J].Journal of Sedimentary Research, 2008, 78(7): 458-479.
[47] Atchley S C, Nordt L C, Dworkin S I.Eustatic control on alluvial sequence stratigraphy: A possible example from the Cretaceous-Tertiary transition of the Tornillo Basin, Big Bend National Park, West Texas, USA[J].Journal of Sedimentary Research, 2004, 74(3): 391-404.
[48] Longhitano S G, Mellere D, Ronald J.et al.Tidal depositional systems in the rock record: A review and new insights[J].Sedimentary Geology, 2012, 279: 2-22,doi:10.1016/j.sedgeo.2012.03.024.
[49] Ramos E, Busquets P, Vergés J.Interplay between longitudinal fluvial and transverse alluvial fan systems and growing thrusts in a piggyback basin(SE Pyrenees)[J].Sedimentary Geology, 2002, 146(1/2): 105-131.
[50] Ding Haijun, Meng Xianghua, Ge Ming, et al.Ordovician contourite deposition on the northern segment of the Helan aulacogen seen from the Bench MT section[J].Geology of Anhui, 2008, 18(1): 8-15.
[丁海军,孟祥化,葛铭,等.从桌子山剖面看贺兰坳拉谷北段奥陶系等深流沉积[J].安徽地质,2008,18(1):8-15.]
[51] Shao Qiuli, Zhao Jinping.On the deep water of the Nordic Seas[J].Advances in Earth Science, 2014, 29(1): 42-55.
[邵秋丽,赵进平.北欧海深层水的研究进展[J].地球科学进展,2014,29(1): 42-55.]
[52] Liu Zedong, Wan Xiuquan, Liu Fukai.Long-term impact of geothermal heat flux on the deep ocean temperature and circulation[J].Advances in Earth Science, 2014, 29(10): 1 167-1 174.
[刘泽栋,万修全,刘福凯.海底地热通量对海洋深层温度和环流的长期影响[J].地球科学进展,2014,29(10):1 167-1 174.]
[53] Spence G H, Tucker M E.A proposed integrated multi-signature model for peritidal cycles in carbonates[J].Journal of Sedimentary Research, 2007, 77(10): 797-808.
[54] Xie Guoai, Zhang Qinglong, Guo Lingzhi.The genesis and hydrocarbon distribution of western and southern margins of Paleozoic foreland basin and central paleouplift in Ordos Basin[J].Acta Petrolei Sinica, 2003, 24(2): 18-29.
[解国爱,张庆龙,郭令智.鄂尔多斯盆地西缘和南缘古生代前陆盆地及中央古隆起成因与油气分布[J].石油学报,2003,24(2):18-29.]
[55] Zhang Jin, Li Jinyi, Liu Jianfeng, et al.The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block[J].Acta Petrologica Sinica, 2012, 28(9): 2 912-2 934.
[张进,李锦轶,刘建峰,等.早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J].岩石学报,2012,28(9):2 912-2 934.]
[56] Wang Zhentao, Zhou Hongrui, Wang Xunlian.Ordovician geological events group in the west and south Ordos Basin[J].Acta Geologica Sinica, 2015, 89(11): 1 990-2 004.
[王振涛,周洪瑞,王训练,等.鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用[J]].地质学报,2015,89(11):1 990-2 004.]
[57] Xu Shumei, Feng Huaiwei, Li Sanzhong, et al.Study on caledonian movement in Helanshan and its surrounding area[J].Acta Petrologica Sinica, 2016, 32(7): 2 137-2 150.
[许淑梅,冯怀伟,李三忠,等.贺兰山及周边地区加里东运动研究[J].岩石学报,2016,32(7):2 137-2 150.]
[58] Xu Liming, Zhou Lifa, Zhang Yikai, et al.Record of deposition-magmatism of Xiangshan Group and the reflection of tectonic environment[J].Journal of Northwest University(Natural Science Edition), 2006, 36(3): 442-448.
[徐黎明,周立发,张义楷,等.香山群沉积岩浆记录及其反映的大地构造环境[J].西北大学学报:自然科学版,2006,36(3):442-448.]
[59] Li Xiangdong, He Youbin, Liu Xun, et al.The analysis for tectonic setting of Xujiajuan Formation, Xiangshan Group, Ningxia, China[J].Geology in China, 2011, 38(2): 374-383.
[李向东,何幼斌,刘训,等.宁夏中奥陶统香山群徐家圈组大地构造环境分析[J].中国地质,2011,38(2):374-383.]
[60] Wang Zhentao, Zhou Hongrui, Wang Xunlian, et al.Provenance and tectonic settings analysis of Yingtaogou Formation of Middle Ordovician in Helan Mountain area[J].Acta Sedimentologica Sinica, 2014, 32(2): 205-217.
[王振涛,周洪瑞,王训练,等.贺兰山地区中奥陶统樱桃沟组物源及构造背景分析[J].沉积学报,2014,32(2):205-217.]
[61] Ren Jishun, Niu Baogui, Liu Zhigang.Soft collision, superposition orogeny and polycyclic suturing[J].Earth Science Frontiers, 1999, 6(3): 85-93.
[任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999, 6(3):85-93.]
[1] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[2] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[5] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[6] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[7] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[8] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[9] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[10] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[11] 熊国庆,江新胜,蔡习尧,伍皓. 藏南白垩系泥、页岩微量、稀土元素特征及氧化—还原环境分析[J]. 地球科学进展, 2010, 25(7): 730-745.
[12] 李俊;弓振斌;李云春;温裕云;杨逸萍. 近岸和河口地区稀土元素地球化学研究进展[J]. 地球科学进展, 2005, 20(1): 64-073.
[13] 马英军;霍润科;徐志方;张辉;刘丛强. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-094.
[14] 王中良,刘丛强,徐志方,韩贵琳,朱建明,张 劲. 河流稀土元素地球化学研究进展[J]. 地球科学进展, 2000, 15(5): 553-540.
[15] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
阅读次数
全文


摘要