地球科学进展 ›› 2011, Vol. 26 ›› Issue (2): 212 -223. doi: 10.11867/j.issn.1001-8166.2011.02.0212

研究论文 上一篇    下一篇

鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征
林春明 1, 张霞 1, 周健 1, 徐深谋 1,2, 俞昊 1, 陈召佑 3   
  1. 1. 内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,江苏南京210093;2.中国石化中原油田分公司勘探开发科学研究院, 河南濮阳457001;3.中国石化华北分公司勘探开发研究院, 河南郑州450006
  • 收稿日期:2010-07-15 修回日期:2010-08-26 出版日期:2011-02-10
  • 通讯作者: 林春明 E-mail:cmlin@nju.edu.cn

Diagenesis Characteristics of the Reservoir Sandstones in Lower Shihezi Formation from Daniudi Gas Field, Ordos Basin

Lin Chunming 1, Zhang Xia 1, Zhou Jian 1, Xu Shenmou 1,2, Yu  Hao 1, Chen Zhaoyou 3   

  1. 1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing210093, China; 2. Scientific Research Institute of Exploration and Development of Zhongyuan Oilfield Company,SINOPEC, Puyang457001, China;
    3. Exploration & Development Research Institute,North China Branch,Sinopec,Zhengzhou450006, China
  • Received:2010-07-15 Revised:2010-08-26 Online:2011-02-10 Published:2011-02-10

鄂尔多斯盆地大牛地气田二叠系下石盒子组储层砂岩具有成分成熟度低,结构成熟度中等到好的特点, 岩性以岩屑石英砂岩和岩屑砂岩为主。砂岩属于特低孔特低渗储层, 以次生溶蚀粒间孔为主要储集空间。储层成岩作用主要包括压实、溶解、胶结和交代4种, 目前处于中成岩阶段B期。成岩作用对储集物性的影响主要表现在孔隙度和渗透率两方面。机械压实作用主要发育于成岩阶段早期, 是造成下石盒子组储层埋深小于2 350 m砂岩原生孔隙大量丧失、渗透率急剧减小的主要原因, 随着埋藏深度的增加, 其对储层物性的影响逐渐减弱。胶结作用对储层物性的破坏主要表现为各种胶结物的沉淀析出、充填孔隙及堵塞喉道, 其中孔隙衬里绿泥石和碳酸盐胶结物对储层物性的影响具有双重性, 孔隙衬里绿泥石对储集物性的建设性大于破坏性, 其减弱了机械压实强度, 抑制了硅质胶结物的发育, 并为后期酸性有机流体的进入以及溶解产物的带出提供了有效通道, 有利于溶蚀孔隙的发育; 早期碳酸盐胶结物减弱了压实作用对储集物性的破坏强度, 并为后期溶解作用的发育提供了物质基础, 而后期碳酸盐胶结物充填孔隙, 堵塞喉道, 对储集物性起破坏作用。溶解作用是导致次生孔隙发育及改善砂岩储集性能的主要因素, 下石盒子组储层在埋深2 400、2 500和2 670 m附近存在3个次生溶蚀孔隙发育带。

Reservoir sandstones of the Permian lower Shihezi formation in Daniudi gas field of Ordos basin, mainly consist of lithic quartz sandstone and litharenite, with low compositional maturity and median-high textural maturity. It belongs to extra-low porosity and permeability reservoir, with dissolved intergranular pores as the chief accumulation space. The lower Shihezi formation reservoir sandstones are now in the B stage of mesodiagenesis, the main diagenesis of which includes  compaction, cementation, dissolution and replacement. The mechanical compaction, which principally takes place in the early time of burial history, is the predominant reason for reservoir quality destruction of lower Shihezi formation sandstones with burial depth shallower than 2 350 m. The different cementation and dissolution take place progressively with the burial depth increasing, making the destruction degree resulted by mechanical compaction weakened. The destruction impact of cementation is characterized by precipitation of different cement in primary and secondary pores. The cementation of pore-lining chlorite and carbonate exert two different influences  on reservoir quality. The construction influence of pore-lining chlorite cementation on lower Shihezi formation reservoir quality is prior to destruction. The pore-lining chlorite can preserve some primary intergrannular porosity by weakening the degree of mechanical compaction and inhibiting the subsequent generation of quartz cement, furthermore, provide the passageway for the entrance of acid fluid of the A stage of mesodiagenesis and flowout of dissolved resultant product, making a large number of secondary pores produced. On the one hand, for the cementation of early stage carbonate, it not only weakens the destruction degree of mechanical compaction, but also provides favourable condition for the late disslotion; on the other hand, for the cementation of late stage carbonate, it precipitates in the pores and obstructs the throats, making the reservoir quality destructed heavily. Dissolution of the reservoir sandstones is the main factor of the development of secondary pores, which can improve the physical property of the reservoir sandstones. There are three dissolution zones in the lower Shihezi formation sandstones, located in the vicinity of 2 400 m, 2 500 m and 2 670 m perspectively.

中图分类号: 

[1]Tang Haifa,Peng Shimi,Zhao Yanchao. Characterisitics of pore structure and reservoir evaluation in H2+3 tight gas reservoir, Daniudi gas field[J].Journal of Mineralogy and Petrology,2006,26(3):107-113.[唐海发,彭仕宓,赵彦超. 大牛地气田盒2+3段致密砂岩储层微观孔隙结构特征及其分类评价[J]. 矿物岩石,2006,26(3):107-113.]
[2]Jia Huichong,Meng Juntian. Formation conditions of reservoirs with high porosity and permeability in the second and the third members of Lower Shihezi Formation in Daniudi gas field[J].Natural Gas industry,2007, 27(12):43-45.[贾会冲,孟军田. 大牛地气田盒2、3段高孔渗储层的形成条件[J]. 天然气工业,2007,27(12):43-45.]
[3]Guo Yinghai,Liu Huanjie. The Late Palaeozoic depositional systerms of Shanxi-Gansu-Ningxia area[J]. Journal of Palaeogeography,2000,2(1):19-30.[郭英海,刘焕杰. 陕甘宁地区晚古生代的沉积体系[J].古地理学报,2000,2(1):19-30.]
[4]Hao Shumin,Hui Kuanyang,Li Liang,et al. Reservoiring features of Daniudi lowpermeability gas field in Ordos Basin and its exploration and development technologies[J].Oil & Gas Geology,2006,27(6):2-9.[郝蜀民,惠宽洋,李良,等. 鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J]. 石油与天然气地质,2006,27(6):2-9.]
[5]Salem A M,Morad S,Mato L F,et al. Diagenesis and reservoir quality evolution of fluvial sandstones during progressive burial and up lift:Evidence from the Upper Jurassic BoipebaMember, Recéncavo Basin, Northeastern Brazil[J].AAPG Bulletin,2000,84(7):1 015-1 040.
[6]Ceriani A,Di Giulio A,Goldstein R H,et al. Diagenesis associated with cooling during burial: An example from Lower Cretaceous reservoir sandstones (Sirt Basin, Libya)[J]. AAPG Bulletin,2002,86(9):1 573-1 591.
[7]Folk R L . Petrology of Sedimentary Rocks[M]. Austin Texas: Hemphills,1974:159.
[8]Qiu Yi′nan, Xue Shuhao. The Evaluation Technology of Oil and Gas Reservoirs[M]. Beijing: Petroleum Industry Press,1997:228.[裘亦楠, 薛叔浩. 油气储层评价技术[M].北京: 石油工业出版社, 1997:228.]
[9]Cao Zhonghui,Cheng Shaolin. An analysis of clay minerals in Upper Paleozoic reservoir of Daniudi gas field and their sensitivities[J]. Henan Petroleum,2006,20(1):10-13.[曹忠辉,程少林. 大牛地气田上古生界储层粘土矿物及敏感性分析[J]. 河南石油,2006,20(1):10-13.]
[10]Surdam R C,Crossey L J,Hagen E S,et al. Organicinorganic interaction and sandstone diagenesis[J]. AAPG Bulletin,1989,73(1):1-23.
[11]Sun Yongchuan,Chen Honghan,Li Huisheng,et al. Thermal fluid flows and their organic/inorganic diagenetic responses in Ya13-1 gas field of Yinggehai-Qiongdongnan basins, South China Sea[J].Earth Science—Journal of China University of Geosciences,1995,20(3):276-281.[孙永传,陈红汉,李惠生,等.莺一琼盆地YA13-1气田热流体活动与有机/无机成岩响应[J]. 地球科学——中国地质大学学报,1995,20(3):276-281.]
[12]Wang Jing,Zhao Yanchao,Liu Kun,et al. Superimposing controls of acidic and alkaline dissolutions on sandstone reservoir quality of the paleozoic Xiashihezi and Shanxi formations in Tabamiao area, Ordos Basin[J].Earth Science—Journal of China University of Geosciences,2006,31(2):221-228.[王京,赵彦超,刘琨,等. 鄂尔多斯盆地塔巴庙地区上古生界砂岩储层“酸性+碱性”叠加溶蚀作用与储层质量主控因素[J]. 地球科学——中国地质大学学报,2006,31(2):221-228.]
[13]Liu Baojun,Zhang Jinquan. Sedimentary Diagenesis[M]. Beijing: Science Press,1992:74-77.[刘宝珺,张锦泉. 沉积成岩作用[M]. 北京:科学出版社,1992:74-77.]
[14]Fan Zhengping,Hou Yundong,Jia Yani,et al. Diagenesis and porosity evolution of clastic reservoir rocks in Neopaleozoic from Changqing gas field, Ordos Basin[C]Song Yan,Wei Guoqi,Hong Feng,et al,eds. Geologic Research and Application of Natural.Beijing:Petroleum Industry Press,2000:57-65.[范正平,侯云东,贾亚妮,等. 鄂尔多斯盆地长庆气田上古生界碎屑储集岩成岩作用及孔隙演化[C]宋岩,魏国齐,洪峰,等,主编.天然气地质研究及应用. 北京:石油工业出版社,2000:57-65.]
[15]Luo Jinglan,Morad S,Yan Shike,et al. Reconstruction of the diagenesis of the fluvial-deltaic sandstones and its impact on reservoir quality evolution taking an example from the Jurassic-Upper Triassic sandstones in the Yanchang oil field[J].Science in China (Series D),2001,31(12):1 006-1 016.[罗静兰,Morad S,阎世可,等. 河流—湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响——以延长油区侏罗系—上三叠统砂岩为例[J].中国科学:D辑,2001,31(12):1 006-1 016.]
[16]Shi Ji′an,Wang Jinpeng,Mao Minglu,et al. Reservoir sandstone diagenesis of member 6 to 8 in Yanchang Formation (Triassic), Xifeng oilfield, Ordos Basin[J]. Acta Sedimentology Sinica,2003,21(3):373-380.[史基安,王金鹏,毛明陆,等. 鄂尔多斯盆地西峰油田三叠系延长组长6~8段储层砂岩成岩作用研究[J]. 沉积学报,2003,21(3):373-380.]
[17]Zhu Hongquan,Zhang Shaonan. Diageneses of Upper Paleozoic reservoirs in North E′erduosi Basin[J]. Natural Gas Industry,2004,24(2):29-32.[朱宏权,张哨楠. 鄂尔多斯盆地北部上古生界储层成岩作用[J]. 天然气工业,2004,24(2):29-32.]
[18]Qi Binwen,Lin Chunming,Qiu Guiqiang,et al. Formation mechanism of calcareous incrustation in lenticular sandbody of the Shahejie Formation of Paleogene and its influence on hydrocarbon accumulation in Dongying Sag[J]. Journal of Palaeogeography,2006,8(4):519-530.[漆滨汶,林春明,邱桂强,等. 东营凹陷古近系沙河街组砂岩透镜体钙质结壳形成机理及其对油气成藏的影响[J]. 古地理学报,2006,8(4):519-530.]
[19]Qi Binwen,Lin Chunming,Qiu Guiqiang,et al. Reservoir Diagenesis of the intermediate section in member 3 of Shahejie formation (Paleogen) in Niuzhuang Sub-sag, Shandong province[J]. Acta Sedimentology Sinica,2007,25(1):99-109.[漆滨汶,林春明,邱桂强,等. 山东省牛庄洼陷古近系沙河街组沙三中亚段储集层成岩作用研究[J].沉积学报,2007,25(1):99-109.]

[1] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[2] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[3] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[4] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[5] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[6] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[7] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[8] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[9] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[10] 赖锦,王贵文,王书南,郑懿琼,吴恒,张永辰. 碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展, 2013, 28(1): 39-50.
[11] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[12] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[13] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[14] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[15] 黄思静,龚业超,黄可可,佟宏鹏. 埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J]. 地球科学进展, 2010, 25(4): 381-390.
阅读次数
全文


摘要