地球科学进展 ›› 2011, Vol. 26 ›› Issue (4): 355 -364. doi: 10.11867/j.issn.1001-8166.2011.04.0355

综述与评述    下一篇

海洋沉积物中有机质早期成岩矿化路径及其相对贡献
朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕   
  1. 中国海洋大学化学化工学院,海洋化学理论与技术教育部重点实验室,山东青岛266100
  • 收稿日期:2010-03-08 修回日期:2010-11-19 出版日期:2011-04-10
  • 通讯作者: 朱茂旭 E-mail:zhumaoxu@ouc.edu.cn
  • 基金资助:

    海洋沉积与环境地质国家海洋局重点实验室开放基金项目“受富营养化影响的沉积物中硫早期成岩循环及黄铁矿积累研究”(编号:MASEG200811);国家自然科学基金项目“中国东海典型边缘海沉积物中硫的早期成岩循环及制约因素”(编号:41076045)和“中国东海和黄海中生源硫的生产、分布、迁移转化与环境效应”(编号:41030858);教育部留学回国人员科研启动基金项目“受富营养化影响的胶州湾沉积物硫酸盐还原速率(SRR)研究”资助.

Relative Contributions of Various Early Diagenetic Pathways to Mineralization of Organic Matter in Marine Sediments: An Overview

Zhu Maoxu, Shi Xiaoning, Yang Guipeng, Li Tie, Lü Renyan   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
  • Received:2010-03-08 Revised:2010-11-19 Online:2011-04-10 Published:2011-04-10

陆架边缘海沉积物是重要的生物地球化学反应器,海洋中90%以上的有机质沉积于此并在早期成岩作用过程中矿化。其矿化路径包括有氧呼吸、反硝化、锰氧化物还原、铁氧化物还原、SO2-4还原和CO2还原,并按生成自由能减少的顺序依次发生,构成理想的氧化还原序列。定量研究有机碳矿化路径及其对有机质矿化的相对贡献对揭示能量分配和碳循环具有重要的生态学和环境学意义,也是揭示铁、硫、磷及许多氧化还原敏感性微量组分生物地球化学循环的基础。介绍了海洋沉积物中有机质早期成岩矿化路径的主要特点及不同路径对有机质矿化的相对贡献,重点阐述了长期被忽略的铁锰氧化物异化还原路径的研究进展。总体而言,在远洋深海沉积物中,有氧呼吸是有机质矿化唯一的重要路径;而近海沉积物中,铁异化还原和SO2-4还原是最主要的厌氧矿化路径,其中SO2-4还原占(62±17)%。从远洋深海到近海陆架,沉积物中有氧呼吸和SO2-4还原对有机质矿化的相对贡献具侧向分带特征。最近的反应—传输模拟表明,在全球尺度上,有氧呼吸、反硝化、铁异化还原以及SO2-4还原对有机质矿化的相对贡献分别为15%、6.2%、2.8%和76%。

Continental margin sediments are an important biogeochemical reactor, where 90% of organic matter (OM) is deposited and remineralized. OM remineralization proceeds from the use of O2, NO3, Mn(IV) oxides, Fe(III) oxides, sulfate, and finally CO2 according to the gains of free energy yield, forming an ideal redox sequence. Differentiating various diagenetic pathways and their relative contributions to OM remineralization is of ecological importance for understanding energy partitioning and carbon cycling, and of biogeochemical importance for understanding the cycling of iron, sulfur, phosphorus, and redox-sensitive trace compounds. The main characteristics of diagenetic pathways of OM degradation and their relative contributions, particularly dissimilatory reduction of Fe(III) and Mn(IV) oxides, are reviewed. Generally, in pelagic deep sediments, aerobic respiration is the only important pathway for OM degradation; in continental margin sediments, however, anaerobic pathways coupled to dissimilatory reduction of Fe(III)oxides and sulfate are mainly responsible for OM degradation, with sulfate reduction accounting for averagely (62±17)%. From pelagic deep-sea to continental margin sediments, lateral zonation of the relative contributions of aerobic respiration and sulfate reduction, respectively, to carbon mineralization can be observed. Recent reaction-transport modeling indicates that global-scale contributions of aerobic respiration, denitrification, dissimilatory Fe(III) reduction, and sulfate reduction to OM degradation are 15%,6.2%,2.8%,and 76%, respectively.

中图分类号: 

[1]Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006. 
[2]Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: University Press, 1980.
[3]Jorgensen B B, Kasten S. Sulfur cycling and methane oxidation[C]Schulz H D,et al.eds. Marine Geochemistry. Berlin: SpringerVerlag, 2006: 271-309. 
[4]Froelich P N, Klinkhammer G P, Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979, 43: 1 075-1 090.
[5]Canfield D E. Organic matter oxidation in marine sediments[C]Wollast R,et al.eds. Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Berlin Heidelberg: SpringerVerlag,1993:333-363.
[6]Canfield D E, Thamdrup B, Hansen J. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J].Geochimica et Cosmochimica Acta,1993,57:3 867-3 883.
[7]Thamdrup B, Canfield D E. Pathways of carbon oxidation in continental margin sediments off central Chile[J]. Limnology and Oceanography,1996, 41: 1 629-1 650.
[8]Thamdrup B, Canfield D E. Benthic respiration in aquatic sediments[C]Sala O E,et al.eds. Methods in Ecosystem Science. New York: Springer,2000: 86-103.
[9]Fossing H, Jorgensen B B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single step chromium reduction method[J].Biogeochemistry,1989,8:205-222.
[10]Canfield D E. Sulfate reduction in deep sea sediments[J].American Journal of Science, 1991, 291: 177-188.
[11]Reeburgh W. Rates of biogeochemical processes in anoxic sediments[J].Annual Review of Earth and Planetary Science,1983, 11: 269-298.
[12]Papadimitriou S, Kennedy H, Thomas D N. Rates of organic carbon oxidation in deep sea sediments in the eastern North Atlantic from pore water profiles of O2and the δ13C of dissolved inorganic carbon[J]. Marine Geology,2004, 212: 97-111.
[13]Hensen C, Zabel M, Schulz H. Benthic cycling of oxygen, nitrogen and phosphorus[C]Schulz H D,et al.eds. Marine Geochemistry. Berlin: SpringerVerlag, 2006: 207-240.
[14]Warnken K W, Santschi P H, Roberts K A,et al. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast[J].Estuarine, Coastal and Shelf Science,2008,76:69-84.
[15]Nielsen L P, RisgaardPetersen N,Fossing H,et al.Electric currents couple spatially separated biogeochemical processes in marine sediment[J].Nature,2010,463:1 071-1 074.]
[16]Canfield D E, Jorgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments
[J]. Marine Geology,1993, 113: 27-40.
[17]Henrichs S M, Reeburgh W S. Anaerobic mineralization of marine sediments organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy[J].Geomicrobiology Journal,1987,5:191-237.
[18]Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J].Advances in Microbiology and Ecology,2000,16: 41-84.
[19]Hyun J H, Mok J S, Cho H Y,et al. Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea[J].Biogeochemistry,2009,92: 231-245.
[20]Jenkins M C, Kemp W M. The coupling of nitrification and denitrification in two estuarine sediments[J].Limnology and Oceanography,1984,29: 609-619.
[21]Wang D,Chen Z,Wang J,et al.Summertime denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[J].Estuarine, Coastal and Shelf Science,2007,73: 43-53.
[22]Hou L J,Liu M,Xu S Y,et al. The effects of semilunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze Estuary, China[J].Estuarine, Coastal and Shelf Science,2007, 73: 607-616.
[23]Wang F,Juniper S K, Pelegri S P,et al. Denitrification in sediments of the Laurentian Trough, St. Lawrence Estuary, Quebec, Canada[J].Estuarine, Coastal and Shelf Science,2003,57: 515-522.
[24]Kristensen E, Mangion P, Tang M,et al. Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests[J].Biogeochemistry,2010,103:143-158.
[25]Hartnett H E, Devol A H. Role of a strong oxygendeficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington Sate[J].Geochimica et Cosmochimica Acta,2003,53: 247-264.
[26]Boudreau B P,Mucci A,Sundby B,et al.Comparative diagenesis at three sites on the Canadian continental margin
[J].Journal of Marine Research,1998,56:1 259-1 284.
[27]Laursen A E, Seitzinger S P. The role of denitrification in nitrogen removal and carbon mineralization in MidAtlantic Bight sediments[J].Continental Shelf Research,2002, 22: 13971 416.
[28]Zopfi J, Bottcher M, Jorgensen B B. Biogeochemistry of sulfur and iron in Thioplocacolonized surface sediments in the upwelling area off central Chile[J].Geochimica et Cosmochimica Acta,2008,72:827-843.
[29]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(III) and Mn(IV) reduction[J].Advances in Microbial Physiology,2004,49: 219-286.
[30]Starkey R L, Halvorson H O.Studies on the transformations of iron in nature.II.Concerning the importance of microorganisms in the solution and precipitation of iron[J].Soil Science,1927,14:381-402.
[31]Nealson K H,Myers C R.Microbial reduction of manganese and iron: New approaches to carbon cycling[J].Applied and Environmental Microbiology,1992,58:439-443.
[32]Christensen J P,Rowe G T.Nitrification and oxygen consumption in northwest Atlantic deepsea sediments[J].Journal of Marine Research,1984,42:1 099-1 116.
[33]Hyun J H,Smith A C,Kostka J K.Relative contributions of sulfate and iron(III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh[J].Applied Geochemistry,2007,22: 2 637-2 651.
[34]Kostka J E,Gribsholt B,Petrie E,et al.The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments
[J].Limnology and Oceanography,2002,47:230-240.
[35]Lovley D R,Phillips E J P.Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric Iron reduction in sediments[J].Applied and Environmental Microbiology,1987,53:2 636-2 641.
[36]Taylor K G, Perry C T, Greenaway A M,et al. Bacterial iron oxide reduction in a terrigenous sediment impacted tropical shallow marine carbonate system, North Jamaica[J].Marine Chemistry, 2007,107:449-463.
[37]Hoehler T M,Alperin M J,Albert D B,et al. Thermodynamic control on hydrogen concentration in anoxic sediments
[J]. Geochimica et Cosmochimica Acta,1998,62:1 745-1 756.
[38]Canfield D E,Kristensen E,Thamdrup B.Aquatic Geomicrobiology[M]. Amsterdam: Elsevier,2005.
[39]Roden E E. Geochemical and microbiological controls on dissimilatory iron reduction[J]. Conptes Rendus Geoscience,2006,338: 456-467.
[40]Jensen M M,Thamdrup B,Rysgaard S,et al.Rates and regulation of microbial iron reduction in sediments of the BalticNorth Sea transition[J].Biogeochemistry,2003, 65: 295-317.
[41]Gribsholt B,Kostka J E,Kristensen E.Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh[J].Marine Ecology Progress Series,2003,259: 237-251.
[42]Vandieken V, Nickel M, Jrgensen B B. Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways[J].Marine Ecology Progress Series,2006, 322: 15-27.
[43]Nickel M, Vandieken V, Bruchert V,et al. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition[J]. Deep Sea Research,2008,55:2 390-2 398.
[44]Rysgaard S,Thamdrup B,RisgaardPetersen N,et al. Seasonal carbon and nutrient mineralization in a high Arctic coastal marine sediment Young Sound, Northeast Greenland[J].Marine Ecology Research Series,1998,175: 261-276.
[45]Kostka J E, Thamdrup B, Glud R N,et al. Rates and pathways of carbon oxidation in permanently cold Arctic sediments
[J].Marine Ecology Research Series,1999,180: 7-21.
[46]Kao S J, Hsu S C, Horng C S, et al. Carbonsulfuriron relationships in the rapidly accumulating marine sediments off southwestern Taiwan[C]Hill R J, et al.eds. Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R, Kaplan. New York: The Geochemical Society,2004: 441-457. 
[47]Kristensen E,Andersen F O,Holmboe N,et al. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand[J].Aquatic Microbial Ecology,2000,22: 199-213.
[48]Kristensen E, Alongi D M. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment[J].Limnology and Oceanography,2006,51:1 557-1 571.
[49]Thamdrup B, Fossing H, Gorgensen B B. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark[J].Geochimica et Cosmochimica Acta,1994,58:5 115-5 129.
[50]Thamdrup B, Glud R N, Hansen J W. Manganese oxidation and in situ manganese fluxes from a coastal sediment
[J].Geochimica et Cosmochimica Acta,1994, 58: 2 563-2 570.
[51]Luther G W, Sundby B, Lewis B L,et al. Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen
[J].Geochimica et Cosmochimica Acta,1997,61: 4 043-4 052.
[52]Aller R C. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances[J].Journal of Marine Research,1994,52: 259-295.
[53]Jrgensen B B. Mineralization of organic matter in the sea bed: The role of sulphate reduction[J].Nature,1982,296:643-645.
[54]Goldhaber M B. Sulfurrich sediment[C]Mackenzie F T,ed. Treatise on Geochemistry. Amsterdam: Elsevier,2004: 257-288.
[55]Skyring G W.Sulfate reduction in coastal ecosystems[J].Geomicrobiology Journal,1987, 5(3/4): 295-373.
[56]Weber A,Riess W,Wenzhoefer F,et al.Sulfate reduction in Black Sea sediments:In situ and laboratory radiotracer measurements from the shelf to 2 000 m depth[J].Deep Sea Research,2001,48: 2 073-2 096.
[57]Bruchert V,Gorgensen B B,Neumann K,et al.Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J].Geochimica et Cosmochimica Acta,2003,67:4 505-4 518.
[58]Law G T W,Shimmield T M,Shimmield G B,et al.Manganese,iron,and sulphur cycling on the Pakistan margin[J].Deep Sea Research,2009,56: 305-323.
[59]Reeburgh W S. Oceanic methane Biogeochemistry[J].Chemical Review, 2007,107(2):486-513.
[60]Thullner M,Dale A W,Regnier P.Globalscale quantification of mineralization pathways in marine sediments: A reactiontransport modelling approach[J].Geochemistry Geophysics Geosystems,2009,10:Q10012,doi:10.1029/2009GC002484.
[61]Lin S,Huang K M,Chen S K.Sulfate reduction and iron sulfi de mineral formation in the southern East China Sea continental slope sediment[J].Deep Sea Research, 2002,49:1 837-1 852.
[62]Valdemarsen T, Kristensen E, Holmer M. Metabolic threshold and sulfidebuffering in diffusion controlled marine sediments impacted by continuous organic enrichment[J].Biogeochemistry,2009,95: 335-353.
[63]Ku T C W,Kay J,Browne E,et al.Pyritization of iron in tropical coastal sediments: Implications for the development of iron, sulfur, and carbon diagenetic properties, Saint Lucia, Lesser Antilles[J].Marine Geology,2008,249:184-205.
[64]Kristensen E, Bouillon S, Dittmar T,et al.Organic carbon dynamics in mangrove ecosystems: A review[J].Aquatic Botany,2008,89:201-219.
[65]Lehtoranta J,Ekholm P, Heikki P.Coastal eutrophication thresholds: A matter of sediment microbial processes
[J].AMBIO, 2009,38:303-308.
[66]Rozan T F, Taillefert M, Trouwborst R E,et al.Iron sulfur phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms[J].Limnology and Oceanography,2002,47: 1 346-1 354.
[67]Wei Yuli, Wang Peng, Zhao Meixun,et al. A preliminary study of microbial diversity of the top sediment from the MDO6-3047[J]. Advances in Earth Science,2010,25:212-219.[魏玉利,王鹏,赵美训,等.黑潮源区沉积物微生物多样性初步研究
[J]. 地球科学进展, 2010,25(2): 212-219.]

[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[3] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[4] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[5] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[6] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[7] 袁兴中,何文珊. 海洋沉积物中的动物多样性及其生态系统功能[J]. 地球科学进展, 1999, 14(5): 458-463.
[8] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
[9] 梁元博,卢博. 海洋沉积物声学物理和土力学[J]. 地球科学进展, 1991, 6(6): 42-43.
阅读次数
全文


摘要