[1]Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006. [2]Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: University Press, 1980. [3]Jorgensen B B, Kasten S. Sulfur cycling and methane oxidation[C]∥Schulz H D,et al.eds. Marine Geochemistry. Berlin: SpringerVerlag, 2006: 271-309. [4]Froelich P N, Klinkhammer G P, Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979, 43: 1 075-1 090. [5]Canfield D E. Organic matter oxidation in marine sediments[C]∥Wollast R,et al.eds. Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Berlin Heidelberg: SpringerVerlag,1993:333-363. [6]Canfield D E, Thamdrup B, Hansen J. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J].Geochimica et Cosmochimica Acta,1993,57:3 867-3 883. [7]Thamdrup B, Canfield D E. Pathways of carbon oxidation in continental margin sediments off central Chile[J]. Limnology and Oceanography,1996, 41: 1 629-1 650. [8]Thamdrup B, Canfield D E. Benthic respiration in aquatic sediments[C]∥Sala O E,et al.eds. Methods in Ecosystem Science. New York: Springer,2000: 86-103. [9]Fossing H, Jorgensen B B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single step chromium reduction method[J].Biogeochemistry,1989,8:205-222. [10]Canfield D E. Sulfate reduction in deep sea sediments[J].American Journal of Science, 1991, 291: 177-188. [11]Reeburgh W. Rates of biogeochemical processes in anoxic sediments[J].Annual Review of Earth and Planetary Science,1983, 11: 269-298. [12]Papadimitriou S, Kennedy H, Thomas D N. Rates of organic carbon oxidation in deep sea sediments in the eastern North Atlantic from pore water profiles of O2and the δ13C of dissolved inorganic carbon[J]. Marine Geology,2004, 212: 97-111. [13]Hensen C, Zabel M, Schulz H. Benthic cycling of oxygen, nitrogen and phosphorus[C]∥Schulz H D,et al.eds. Marine Geochemistry. Berlin: SpringerVerlag, 2006: 207-240. [14]Warnken K W, Santschi P H, Roberts K A,et al. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast[J].Estuarine, Coastal and Shelf Science,2008,76:69-84. [15]Nielsen L P, RisgaardPetersen N,Fossing H,et al.Electric currents couple spatially separated biogeochemical processes in marine sediment[J].Nature,2010,463:1 071-1 074.] [16]Canfield D E, Jorgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments [J]. Marine Geology,1993, 113: 27-40. [17]Henrichs S M, Reeburgh W S. Anaerobic mineralization of marine sediments organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy[J].Geomicrobiology Journal,1987,5:191-237. [18]Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J].Advances in Microbiology and Ecology,2000,16: 41-84. [19]Hyun J H, Mok J S, Cho H Y,et al. Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea[J].Biogeochemistry,2009,92: 231-245. [20]Jenkins M C, Kemp W M. The coupling of nitrification and denitrification in two estuarine sediments[J].Limnology and Oceanography,1984,29: 609-619. [21]Wang D,Chen Z,Wang J,et al.Summertime denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[J].Estuarine, Coastal and Shelf Science,2007,73: 43-53. [22]Hou L J,Liu M,Xu S Y,et al. The effects of semilunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze Estuary, China[J].Estuarine, Coastal and Shelf Science,2007, 73: 607-616. [23]Wang F,Juniper S K, Pelegri S P,et al. Denitrification in sediments of the Laurentian Trough, St. Lawrence Estuary, Quebec, Canada[J].Estuarine, Coastal and Shelf Science,2003,57: 515-522. [24]Kristensen E, Mangion P, Tang M,et al. Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests[J].Biogeochemistry,2010,103:143-158. [25]Hartnett H E, Devol A H. Role of a strong oxygendeficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington Sate[J].Geochimica et Cosmochimica Acta,2003,53: 247-264. [26]Boudreau B P,Mucci A,Sundby B,et al.Comparative diagenesis at three sites on the Canadian continental margin [J].Journal of Marine Research,1998,56:1 259-1 284. [27]Laursen A E, Seitzinger S P. The role of denitrification in nitrogen removal and carbon mineralization in MidAtlantic Bight sediments[J].Continental Shelf Research,2002, 22: 13971 416. [28]Zopfi J, Bottcher M, Jorgensen B B. Biogeochemistry of sulfur and iron in Thioplocacolonized surface sediments in the upwelling area off central Chile[J].Geochimica et Cosmochimica Acta,2008,72:827-843. [29]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(III) and Mn(IV) reduction[J].Advances in Microbial Physiology,2004,49: 219-286. [30]Starkey R L, Halvorson H O.Studies on the transformations of iron in nature.II.Concerning the importance of microorganisms in the solution and precipitation of iron[J].Soil Science,1927,14:381-402. [31]Nealson K H,Myers C R.Microbial reduction of manganese and iron: New approaches to carbon cycling[J].Applied and Environmental Microbiology,1992,58:439-443. [32]Christensen J P,Rowe G T.Nitrification and oxygen consumption in northwest Atlantic deepsea sediments[J].Journal of Marine Research,1984,42:1 099-1 116. [33]Hyun J H,Smith A C,Kostka J K.Relative contributions of sulfate and iron(III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh[J].Applied Geochemistry,2007,22: 2 637-2 651. [34]Kostka J E,Gribsholt B,Petrie E,et al.The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments [J].Limnology and Oceanography,2002,47:230-240. [35]Lovley D R,Phillips E J P.Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric Iron reduction in sediments[J].Applied and Environmental Microbiology,1987,53:2 636-2 641. [36]Taylor K G, Perry C T, Greenaway A M,et al. Bacterial iron oxide reduction in a terrigenous sediment impacted tropical shallow marine carbonate system, North Jamaica[J].Marine Chemistry, 2007,107:449-463. [37]Hoehler T M,Alperin M J,Albert D B,et al. Thermodynamic control on hydrogen concentration in anoxic sediments [J]. Geochimica et Cosmochimica Acta,1998,62:1 745-1 756. [38]Canfield D E,Kristensen E,Thamdrup B.Aquatic Geomicrobiology[M]. Amsterdam: Elsevier,2005. [39]Roden E E. Geochemical and microbiological controls on dissimilatory iron reduction[J]. Conptes Rendus Geoscience,2006,338: 456-467. [40]Jensen M M,Thamdrup B,Rysgaard S,et al.Rates and regulation of microbial iron reduction in sediments of the BalticNorth Sea transition[J].Biogeochemistry,2003, 65: 295-317. [41]Gribsholt B,Kostka J E,Kristensen E.Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh[J].Marine Ecology Progress Series,2003,259: 237-251. [42]Vandieken V, Nickel M, Jrgensen B B. Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways[J].Marine Ecology Progress Series,2006, 322: 15-27. [43]Nickel M, Vandieken V, Bruchert V,et al. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition[J]. Deep Sea Research,2008,55:2 390-2 398. [44]Rysgaard S,Thamdrup B,RisgaardPetersen N,et al. Seasonal carbon and nutrient mineralization in a high Arctic coastal marine sediment Young Sound, Northeast Greenland[J].Marine Ecology Research Series,1998,175: 261-276. [45]Kostka J E, Thamdrup B, Glud R N,et al. Rates and pathways of carbon oxidation in permanently cold Arctic sediments [J].Marine Ecology Research Series,1999,180: 7-21. [46]Kao S J, Hsu S C, Horng C S, et al. Carbonsulfuriron relationships in the rapidly accumulating marine sediments off southwestern Taiwan[C]∥Hill R J, et al.eds. Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R, Kaplan. New York: The Geochemical Society,2004: 441-457. [47]Kristensen E,Andersen F O,Holmboe N,et al. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand[J].Aquatic Microbial Ecology,2000,22: 199-213. [48]Kristensen E, Alongi D M. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment[J].Limnology and Oceanography,2006,51:1 557-1 571. [49]Thamdrup B, Fossing H, Gorgensen B B. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark[J].Geochimica et Cosmochimica Acta,1994,58:5 115-5 129. [50]Thamdrup B, Glud R N, Hansen J W. Manganese oxidation and in situ manganese fluxes from a coastal sediment [J].Geochimica et Cosmochimica Acta,1994, 58: 2 563-2 570. [51]Luther G W, Sundby B, Lewis B L,et al. Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen [J].Geochimica et Cosmochimica Acta,1997,61: 4 043-4 052. [52]Aller R C. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances[J].Journal of Marine Research,1994,52: 259-295. [53]Jrgensen B B. Mineralization of organic matter in the sea bed: The role of sulphate reduction[J].Nature,1982,296:643-645. [54]Goldhaber M B. Sulfurrich sediment[C]∥Mackenzie F T,ed. Treatise on Geochemistry. Amsterdam: Elsevier,2004: 257-288. [55]Skyring G W.Sulfate reduction in coastal ecosystems[J].Geomicrobiology Journal,1987, 5(3/4): 295-373. [56]Weber A,Riess W,Wenzhoefer F,et al.Sulfate reduction in Black Sea sediments:In situ and laboratory radiotracer measurements from the shelf to 2 000 m depth[J].Deep Sea Research,2001,48: 2 073-2 096. [57]Bruchert V,Gorgensen B B,Neumann K,et al.Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J].Geochimica et Cosmochimica Acta,2003,67:4 505-4 518. [58]Law G T W,Shimmield T M,Shimmield G B,et al.Manganese,iron,and sulphur cycling on the Pakistan margin[J].Deep Sea Research,2009,56: 305-323. [59]Reeburgh W S. Oceanic methane Biogeochemistry[J].Chemical Review, 2007,107(2):486-513. [60]Thullner M,Dale A W,Regnier P.Globalscale quantification of mineralization pathways in marine sediments: A reactiontransport modelling approach[J].Geochemistry Geophysics Geosystems,2009,10:Q10012,doi:10.1029/2009GC002484. [61]Lin S,Huang K M,Chen S K.Sulfate reduction and iron sulfi de mineral formation in the southern East China Sea continental slope sediment[J].Deep Sea Research, 2002,49:1 837-1 852. [62]Valdemarsen T, Kristensen E, Holmer M. Metabolic threshold and sulfidebuffering in diffusion controlled marine sediments impacted by continuous organic enrichment[J].Biogeochemistry,2009,95: 335-353. [63]Ku T C W,Kay J,Browne E,et al.Pyritization of iron in tropical coastal sediments: Implications for the development of iron, sulfur, and carbon diagenetic properties, Saint Lucia, Lesser Antilles[J].Marine Geology,2008,249:184-205. [64]Kristensen E, Bouillon S, Dittmar T,et al.Organic carbon dynamics in mangrove ecosystems: A review[J].Aquatic Botany,2008,89:201-219. [65]Lehtoranta J,Ekholm P, Heikki P.Coastal eutrophication thresholds: A matter of sediment microbial processes [J].AMBIO, 2009,38:303-308. [66]Rozan T F, Taillefert M, Trouwborst R E,et al.Iron sulfur phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms[J].Limnology and Oceanography,2002,47: 1 346-1 354. [67]Wei Yuli, Wang Peng, Zhao Meixun,et al. A preliminary study of microbial diversity of the top sediment from the MDO6-3047[J]. Advances in Earth Science,2010,25:212-219.[魏玉利,王鹏,赵美训,等.黑潮源区沉积物微生物多样性初步研究 [J]. 地球科学进展, 2010,25(2): 212-219.] |