[1] |
Lever M A, Rouxel O, Alt J C, et al.Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt[J].Science, 2013,339(6 125): 1 305-1 308.
|
[2] |
Madsen E L.Microorganisms and their roles in fundamental biogeochemical cycles[J].Current Opinion in Biotechnology, 2011,22(3): 456-464.
|
[3] |
Orcutt B N, Larowe D E, Biddle J F, et al.Microbial activity in the marine deep biosphere: Progress and prospects[J].Frontiers in Microbiology, 2013,4:9.
|
[4] |
Integrated Ocean Drilling Program Management International. Illuminating Earth’s Past, Present and Future: The Science Plan for the International Ocean Discovery Program 2013-2023[J/OL].[2015-04-02]..
URL
|
[5] |
Kobayashi T, Koide O, Mori K, et al.Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics-and methane-rich sediments off Shimokita Peninsula[J].Extremophiles,2008,12(4): 519-527.
|
[6] |
Lipp J S, Morono Y, Inagaki F, et al.Significant contribution of Archaea to extant biomass in marine subsurface sediments[J].Nature,2008,454(7 207): 991-994.
|
[7] |
Teske A, Sørensen K B.Uncultured archaea in deep marine subsurface sediments: have we caught them all?[J].The ISME Journal, 2007,2(1): 3-18.
|
[8] |
Valentine D L.Adaptations to energy stress dictate the ecology and evolution of the Archaea[J].Nature Reviews Microbiology,2007,5(4): 316-323.
|
[9] |
Lengger S K, Hopmans E C, Reichart G-J, et al.Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86[J].Geochimica et Cosmochimica Acta, 2012,98: 244-258.
|
[10] |
Weijers J W, Schouten S, Hopmans E C, et al.Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J].Environmental Microbiology, 2006,8(4): 648-657.
|
[11] |
Oba M, Sakata S, Tsunogai U.Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough[J].Organic Geochemistry, 2006,37(12): 1 643-1 654.
|
[12] |
Koga Y, Morii H.Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects[J].Bioscience, Biotechnology, and Biochemistry, 2005,69(11): 2 019-2 034.
|
[13] |
White D C.Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity[J].Advances in Limnology,1988,31(1):1-18.
|
[14] |
Pearson A, Ingalls A E.Assessing the use of archaeal lipids as marine environmental proxies[J].Annual Review of Earth and Planetary Sciences, 2013,41: 359-384.
|
[15] |
Schouten S, Hopmans E C, Sinninghe Damsté J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J].Organic Geochemistry, 2013,54:19-61.
|
[16] |
Yao Peng, Yu Zhigang.Advances of intact polar membrane lipids as chemical biomarkers for extant microorganisms in marine sediments[J]. Advances in Earth Science, 2010,25(5): 474-483.
|
|
[姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010,25(5): 474-483.]
|
[17] |
Schubotz F, Wakeham S G, Lipp J S, et al.Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea[J].Environmental Microbiology, 2009,11(10): 2 720-2 734.
|
[18] |
Xie S, Liu X L, Schubotz F, et al.Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean[J].Organic Geochemistry, 2014,71: 60-71.
|
[19] |
Schouten S, Hopmans E C, Schefu β E, et al.Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J].Earth and Planetary Science Letters, 2002,204(1): 265-274.
|
[20] |
Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions[J].Geochimica et Cosmochimica Acta, 2010,74(16): 4 639-4 654.
|
[21] |
Wakeham S G, Lewis C M, Hopmans E C, et al.Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea[J].Geochimica et Cosmochimica Acta, 2003,67(7): 1 359-1 374.
|
[22] |
Schouten S, Pitcher A, Hopmans E C, et al.Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86[J].Geochimica et Cosmochimica Acta, 2012,98: 228-243.
|
[23] |
Schouten S, Hopmans E C, Baas M, et al.Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota[J].Applied and Environmental Microbiology,2008,74(8): 2 433-2 440.
|
[24] |
Pitcher A, Hopmans E C, Mosier A C, et al.Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-Oxidizing archaea enriched from marine and estuarine sediments[J].Applied and Environmental Microbiology, 2011,77(10): 3 468-3 477.
|
[25] |
Zhu C, Lipp J S, Wörmer L, et al.Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol[J].Organic Geochemistry, 2013, 65: 53-62.
|
[26] |
Basse A, Zhu C, Versteegh G J, et al.Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa[J].Organic Geochemistry, 2014,72: 1-13.
|
[27] |
Foster R A, Kuypers M M, Vagner T, et al.Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses[J].The ISME Journal, 2011,5(9): 1 484-1 493.
|
[28] |
Bauersachs T, Compaoré J, Hopmans E C, et al.Distribution of heterocyst glycolipids in cyanobacteria[J].Phytochemistry,2009,70(17): 2 034-2 039.
|
[29] |
Schouten S, Villareal T A, Hopmans E C, et al.Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocystous cyanobacteria[J].Phytochemistry, 2013,85: 115-121.
|
[30] |
Bale N J, Hopmans E C, Zell C, et al.Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J].Organic Geochemistry, 2015,81: 1-7.
|
[31] |
Cavanaugh C M, Gardiner S L, Jones M L, et al.Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts[J].Science, 1981,213(4 505): 340-342.
|
[32] |
Cavanaugh C M, Mckiness Z P, Newton I L, et al.Marine Chemosynthetic Symbioses[M]∥The Prokaryotes.New York: Springer,2013.
|
[33] |
Kellermann M Y, Schubotz F, Elvert M, et al.Symbiont-host relationships in chemosynthetic mussels: A comprehensive lipid biomarker study[J].Organic Geochemistry, 2012,43: 112-124.
|
[34] |
Sollai M, Hopmans E, Schouten S, et al.Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N-cycling in the Eastern Tropical North Pacific oxygen deficient zone[J].Biogeosciences Discussions, 2015,12(6): 4 833-4 864.
|
[35] |
Spang A, Hatzenpichler R, Brochier-Armanet C, et al.Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota[J].Trends in Microbiology, 2010,18(8): 331-340.
|
[36] |
Dalsgaard T, Thamdrup B, Canfield D E.Anaerobic ammonium oxidation (anammox) in the marine environment[J].Research in Microbiology, 2005,156(4): 457-464.
|
[37] |
Pitcher A, Rychlik N, Hopmans E C, et al.Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I. 1b Archaeon[J].Isme Journal, 2010,4(4): 542-552.
|
[38] |
Wakeham S G, Turich C, Schubotz F, et al.Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J].Deep-Sea Research Part I: Oceanographic Research Papers, 2012,63: 133-156.
|
[39] |
Pitcher A, Villanueva L, Hopmans E C, et al.Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone[J].Isme Journal, 2011, 5(12): 1 896-1 904.
|
[40] |
Jaeschke A, Hopmans E C, Wakeham S G, et al.The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox[J].Limnology and Oceanography, 2007,52(2): 780-786.
|
[41] |
Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J].FEMS Microbiology Letters, 2006,258(2): 297-304.
|
[42] |
Rattray J E, Van De Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria[J].Archives of Microbiology, 2008,190(1): 51-66.
|
[43] |
Brandsma J, Van De Vossenberg J, Risgaard-Petersen N, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J].Environmental Microbiology Reports, 2011,3(3): 360-366.
|
[44] |
Bale N J, Villanueva L, Fan H, et al.Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea[J].FEMS Microbiology Ecology,2014,89(1): 99-110.
|
[45] |
Yan J, Haaijer S, Op Den Camp H J, et al. Mimicking the oxygen minimum zones: Stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system[J].Environmental Microbiology, 2012,14(12): 3 146-3 158.
|
[46] |
Knittel K, Boetius A.Anaerobic oxidation of methane with sulfate[M]∥Thiel V, Reitner J,eds.Encyclopedia of Geobiology. Netherland: Springer,2011.
|
[47] |
Knittel K, Boetius A.Anaerobic oxidation of methane: Progress with an unknown process[J].Annual Review of Microbiology, 2009,63: 311-334.
|
[48] |
Reeburgh W S.Oceanic methane biogeochemistry[J].Chemical Reviews, 2007,107(2): 486-513.
|
[49] |
Schubotz F, Lipp J S, Elvert M, et al.Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano[J].Geochimica et Cosmochimica Acta, 2011,75(16): 4 399-4 415.
|
[50] |
Teske A, Callaghan A V, Larowe D E.Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin[J].Frontiers in Microbiology, 2014,5:362.
|
[51] |
Hinrichs K U, Hayes J M, Sylva S P, et al.Methane-consuming archaebacteria in marine sediments[J].Nature, 1999,398(6 730): 802-805.
|
[52] |
Rossel P E, Lipp J S, Fredricks H F, et al.Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J].Organic Geochemistry, 2008,39(8): 992-999.
|
[53] |
Rossel P E, Elvert M, Ramette A, et al.Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids[J].Geochimica et Cosmochimica Acta, 2011,75(1): 164-184.
|
[54] |
Yoshinaga M Y, Lazar C S, Elvert M, et al.Possible roles of uncultured archaea in carbon cycling in methane-seep sediments[J].Geochimica et Cosmochimica Acta, 2015,164: 35-52.
|
[55] |
Elling F J, Könneke M, Lipp J S, et al.Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment[J].Geochimica et Cosmochimica Acta, 2014,141: 579-597.
|
[56] |
Meador T B, Gagen E J, Loscar M E, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability[J].Frontiers in Extreme Microbiology, 2014,doi:10.3389/fmicb.2004.00010.
|
[57] |
Van Mooy B A, Fredricks H F, Pedler B E, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity[J].Nature, 2009,458(7 234): 69-72.
|
[58] |
Takano Y, Chikaraishi Y, Ogawa N O, et al.Sedimentary membrane lipids recycled by deep-sea benthic archaea[J].Nature Geoscience, 2010,3(12): 858-861.
|
[59] |
Parkes R J, Cragg B A, Bale S, et al.Deep bacterial biosphere in Pacific Ocean sediments[J].Nature, 1994,371(6 496): 410-413.
|
[60] |
Schouten S, Middelburg J J, Hopmans E C, et al.Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach[J].Geochimica et Cosmochimica Acta, 2010,74(13): 3 806-3 814.
|
[61] |
Logemann J, Graue J, Köster J, et al.A laboratory experiment of intact polar lipid degradation in sandy sediments[J].Biogeosciences, 2011,8(9): 2 547-2 560.
|
[62] |
Lipp J S, Hinrichs K-U.Structural diversity and fate of intact polar lipids in marine sediments[J].Geochimica et Cosmochimica Acta, 2009,73(22): 6 816-6 833.
|
[63] |
Lin Y S, Lipp J S, Elvert M, et al.Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing[J].Environmental Microbiology, 2013,15(5): 1 634-1 646.
|
[64] |
Xie S, Lipp J S, Wegener G, et al.Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations[J].Proceedings of the National Academy of Sciences, 2013,110(15): 6 010-6 014.
|
[65] |
Harvey H R, Fallon R D, Patton J S.The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J].Geochimica et Cosmochimica Acta, 1986,50(5): 795-804.
|
[66] |
Wörmer L, Lipp J S, Schröder J M, et al.Application of two new LC-ESI-MS methods for improved detection of Intact Polar Lipids (IPLs) in environmental samples[J].Organic Geochemistry, 2013,59: 10-21.
|