地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1162 -1171. doi: 10.11867/j.issn.1001-8166.2015.10.1162

所属专题: IODP研究

上一篇    下一篇

完整极性脂质化合物对海洋微生物活动的指示及应用局限性
宋敏 1, 2( ), 杨群慧 2, *( ), 王华 1, 季福武 2, 王虎 2, 潘安阳 2, 周怀阳 2   
  1. 1.同济大学环境科学与工程学院,上海 200092
    2.同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2015-05-12 修回日期:2015-08-17 出版日期:2015-10-20
  • 通讯作者: 杨群慧 E-mail:11_songmin@tongji.edu.cn;yangqh@tongji.edu.cn
  • 基金资助:
    国家重点基础研究发展计划项目“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”(编号:2012CB417300);中国大洋协会国际海底区域项目“西南印度洋多金属硫化物合同区环境基线综合集成研究”(编号:DY125-11-E-05)资助

Applications of Intact Polar Lipids for Tracing the Marine Microbial Activity and Their Limitations

Min Song 1, 2( ), Qunhui Yang 2, *( ), Hua Wang 1, Fuwu Ji 2, Hu Wang 2, Anyang Pan 2, Huaiyang Zhou 2   

  1. 1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2015-05-12 Revised:2015-08-17 Online:2015-10-20 Published:2015-10-20
  • Contact: Qunhui Yang E-mail:11_songmin@tongji.edu.cn;yangqh@tongji.edu.cn

回顾了近10年来完整极性脂质化合物(IPLs)在海洋微生物研究中的应用及存在的问题,并展望了IPLs应用的发展前景。作为新的热点之一,对海洋水体悬浮颗粒物中IPLs的研究,不仅推进了人们对水柱中IPLs分布和转化的了解,同时也深化了对古环境指标TEX86适用性的认识,有助于更好地开展古环境重建研究。色谱和质谱技术的发展,新型化合物的发现以及IPLs单体碳同位素分析的应用,使得IPLs在示踪海洋环境中真核生物与微生物共生作用、微生物介导的好氧和厌氧氨氧化以及甲烷厌氧氧化作用、微生物的代谢状态等方面也取得了重要研究进展。需要注意的是,由于不同的IPLs降解速率并不一致,其中部分古菌糖脂的降解周期可能远大于微生物群落的更新周期,因此可能并不适于表征活体生物量;同时,环境中氧气含量及有机质浓度也会对IPLs的降解速率造成影响;另外,在微生物不同的生长阶段,或者微生物由于生长环境条件变化产生生理响应时,IPLs组成也可能会发生变化。因此,应用IPLs指示微生物活动和反演古环境时应注意指标的适用性。

Intact Polar Lipids (IPLs) are synthesized predominately or uniquely by specific organisms and would degrade rapidly after cell death. Such biomarker IPLs can be used to indicate the microbial distribution and activity in marine environment. Here the progress of the aforementioned studies made over the last decade was reviewed. With the development of chromatography and mass spectrometry, the discovery of new IPLs compounds and the application of stable carbon isotope composition (δ13C) of IPLs, our understanding of the composition and transformation of IPLs in suspended particulate matter in the water column and of the applicability of the TEX86 proxy are greatly improved. Besides, IPLs are widely applied in the study of marine eukaryotes-bacteria symbiosis, aerobic and anaerobic ammonia oxidation, anaerobic methane oxidation and microbial metabolic states. Meanwhile, it is suggested by recent studies that different IPLs often exhibit differential degradation. Some IPLs, especially glycolipids, have the potential to be preserved as fossil molecules for very long time upon dead cells, and therefore, they can not specifically indicate living biomass. Furthermore, the IPLs degradation rate and completeness would be affected by such factors as oxygen concentration and organic matter content. It is also suggested that the composition of IPLs might be affected by microbial metabolism. Therefore, it is essential to take these factors into account when IPLs are used as proxies to trace marine microbial activities and reconstruct the palaeoenvironment.

中图分类号: 

[1] Lever M A, Rouxel O, Alt J C, et al.Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt[J].Science, 2013,339(6 125): 1 305-1 308.
[2] Madsen E L.Microorganisms and their roles in fundamental biogeochemical cycles[J].Current Opinion in Biotechnology, 2011,22(3): 456-464.
[3] Orcutt B N, Larowe D E, Biddle J F, et al.Microbial activity in the marine deep biosphere: Progress and prospects[J].Frontiers in Microbiology, 2013,4:9.
[4] Integrated Ocean Drilling Program Management International. Illuminating Earth’s Past, Present and Future: The Science Plan for the International Ocean Discovery Program 2013-2023[J/OL].[2015-04-02]..
URL    
[5] Kobayashi T, Koide O, Mori K, et al.Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics-and methane-rich sediments off Shimokita Peninsula[J].Extremophiles,2008,12(4): 519-527.
[6] Lipp J S, Morono Y, Inagaki F, et al.Significant contribution of Archaea to extant biomass in marine subsurface sediments[J].Nature,2008,454(7 207): 991-994.
[7] Teske A, Sørensen K B.Uncultured archaea in deep marine subsurface sediments: have we caught them all?[J].The ISME Journal, 2007,2(1): 3-18.
[8] Valentine D L.Adaptations to energy stress dictate the ecology and evolution of the Archaea[J].Nature Reviews Microbiology,2007,5(4): 316-323.
[9] Lengger S K, Hopmans E C, Reichart G-J, et al.Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86[J].Geochimica et Cosmochimica Acta, 2012,98: 244-258.
[10] Weijers J W, Schouten S, Hopmans E C, et al.Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J].Environmental Microbiology, 2006,8(4): 648-657.
[11] Oba M, Sakata S, Tsunogai U.Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough[J].Organic Geochemistry, 2006,37(12): 1 643-1 654.
[12] Koga Y, Morii H.Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects[J].Bioscience, Biotechnology, and Biochemistry, 2005,69(11): 2 019-2 034.
[13] White D C.Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity[J].Advances in Limnology,1988,31(1):1-18.
[14] Pearson A, Ingalls A E.Assessing the use of archaeal lipids as marine environmental proxies[J].Annual Review of Earth and Planetary Sciences, 2013,41: 359-384.
[15] Schouten S, Hopmans E C, Sinninghe Damsté J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J].Organic Geochemistry, 2013,54:19-61.
[16] Yao Peng, Yu Zhigang.Advances of intact polar membrane lipids as chemical biomarkers for extant microorganisms in marine sediments[J]. Advances in Earth Science, 2010,25(5): 474-483.
[姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010,25(5): 474-483.]
[17] Schubotz F, Wakeham S G, Lipp J S, et al.Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea[J].Environmental Microbiology, 2009,11(10): 2 720-2 734.
[18] Xie S, Liu X L, Schubotz F, et al.Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean[J].Organic Geochemistry, 2014,71: 60-71.
[19] Schouten S, Hopmans E C, Schefu β E, et al.Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J].Earth and Planetary Science Letters, 2002,204(1): 265-274.
[20] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions[J].Geochimica et Cosmochimica Acta, 2010,74(16): 4 639-4 654.
[21] Wakeham S G, Lewis C M, Hopmans E C, et al.Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea[J].Geochimica et Cosmochimica Acta, 2003,67(7): 1 359-1 374.
[22] Schouten S, Pitcher A, Hopmans E C, et al.Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86[J].Geochimica et Cosmochimica Acta, 2012,98: 228-243.
[23] Schouten S, Hopmans E C, Baas M, et al.Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota[J].Applied and Environmental Microbiology,2008,74(8): 2 433-2 440.
[24] Pitcher A, Hopmans E C, Mosier A C, et al.Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-Oxidizing archaea enriched from marine and estuarine sediments[J].Applied and Environmental Microbiology, 2011,77(10): 3 468-3 477.
[25] Zhu C, Lipp J S, Wörmer L, et al.Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol[J].Organic Geochemistry, 2013, 65: 53-62.
[26] Basse A, Zhu C, Versteegh G J, et al.Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa[J].Organic Geochemistry, 2014,72: 1-13.
[27] Foster R A, Kuypers M M, Vagner T, et al.Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses[J].The ISME Journal, 2011,5(9): 1 484-1 493.
[28] Bauersachs T, Compaoré J, Hopmans E C, et al.Distribution of heterocyst glycolipids in cyanobacteria[J].Phytochemistry,2009,70(17): 2 034-2 039.
[29] Schouten S, Villareal T A, Hopmans E C, et al.Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocystous cyanobacteria[J].Phytochemistry, 2013,85: 115-121.
[30] Bale N J, Hopmans E C, Zell C, et al.Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J].Organic Geochemistry, 2015,81: 1-7.
[31] Cavanaugh C M, Gardiner S L, Jones M L, et al.Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts[J].Science, 1981,213(4 505): 340-342.
[32] Cavanaugh C M, Mckiness Z P, Newton I L, et al.Marine Chemosynthetic Symbioses[M]∥The Prokaryotes.New York: Springer,2013.
[33] Kellermann M Y, Schubotz F, Elvert M, et al.Symbiont-host relationships in chemosynthetic mussels: A comprehensive lipid biomarker study[J].Organic Geochemistry, 2012,43: 112-124.
[34] Sollai M, Hopmans E, Schouten S, et al.Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N-cycling in the Eastern Tropical North Pacific oxygen deficient zone[J].Biogeosciences Discussions, 2015,12(6): 4 833-4 864.
[35] Spang A, Hatzenpichler R, Brochier-Armanet C, et al.Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota[J].Trends in Microbiology, 2010,18(8): 331-340.
[36] Dalsgaard T, Thamdrup B, Canfield D E.Anaerobic ammonium oxidation (anammox) in the marine environment[J].Research in Microbiology, 2005,156(4): 457-464.
[37] Pitcher A, Rychlik N, Hopmans E C, et al.Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I. 1b Archaeon[J].Isme Journal, 2010,4(4): 542-552.
[38] Wakeham S G, Turich C, Schubotz F, et al.Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J].Deep-Sea Research Part I: Oceanographic Research Papers, 2012,63: 133-156.
[39] Pitcher A, Villanueva L, Hopmans E C, et al.Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone[J].Isme Journal, 2011, 5(12): 1 896-1 904.
[40] Jaeschke A, Hopmans E C, Wakeham S G, et al.The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox[J].Limnology and Oceanography, 2007,52(2): 780-786.
[41] Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J].FEMS Microbiology Letters, 2006,258(2): 297-304.
[42] Rattray J E, Van De Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria[J].Archives of Microbiology, 2008,190(1): 51-66.
[43] Brandsma J, Van De Vossenberg J, Risgaard-Petersen N, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J].Environmental Microbiology Reports, 2011,3(3): 360-366.
[44] Bale N J, Villanueva L, Fan H, et al.Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea[J].FEMS Microbiology Ecology,2014,89(1): 99-110.
[45] Yan J, Haaijer S, Op Den Camp H J, et al. Mimicking the oxygen minimum zones: Stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system[J].Environmental Microbiology, 2012,14(12): 3 146-3 158.
[46] Knittel K, Boetius A.Anaerobic oxidation of methane with sulfate[M]∥Thiel V, Reitner J,eds.Encyclopedia of Geobiology. Netherland: Springer,2011.
[47] Knittel K, Boetius A.Anaerobic oxidation of methane: Progress with an unknown process[J].Annual Review of Microbiology, 2009,63: 311-334.
[48] Reeburgh W S.Oceanic methane biogeochemistry[J].Chemical Reviews, 2007,107(2): 486-513.
[49] Schubotz F, Lipp J S, Elvert M, et al.Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano[J].Geochimica et Cosmochimica Acta, 2011,75(16): 4 399-4 415.
[50] Teske A, Callaghan A V, Larowe D E.Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin[J].Frontiers in Microbiology, 2014,5:362.
[51] Hinrichs K U, Hayes J M, Sylva S P, et al.Methane-consuming archaebacteria in marine sediments[J].Nature, 1999,398(6 730): 802-805.
[52] Rossel P E, Lipp J S, Fredricks H F, et al.Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J].Organic Geochemistry, 2008,39(8): 992-999.
[53] Rossel P E, Elvert M, Ramette A, et al.Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids[J].Geochimica et Cosmochimica Acta, 2011,75(1): 164-184.
[54] Yoshinaga M Y, Lazar C S, Elvert M, et al.Possible roles of uncultured archaea in carbon cycling in methane-seep sediments[J].Geochimica et Cosmochimica Acta, 2015,164: 35-52.
[55] Elling F J, Könneke M, Lipp J S, et al.Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment[J].Geochimica et Cosmochimica Acta, 2014,141: 579-597.
[56] Meador T B, Gagen E J, Loscar M E, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability[J].Frontiers in Extreme Microbiology, 2014,doi:10.3389/fmicb.2004.00010.
[57] Van Mooy B A, Fredricks H F, Pedler B E, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity[J].Nature, 2009,458(7 234): 69-72.
[58] Takano Y, Chikaraishi Y, Ogawa N O, et al.Sedimentary membrane lipids recycled by deep-sea benthic archaea[J].Nature Geoscience, 2010,3(12): 858-861.
[59] Parkes R J, Cragg B A, Bale S, et al.Deep bacterial biosphere in Pacific Ocean sediments[J].Nature, 1994,371(6 496): 410-413.
[60] Schouten S, Middelburg J J, Hopmans E C, et al.Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach[J].Geochimica et Cosmochimica Acta, 2010,74(13): 3 806-3 814.
[61] Logemann J, Graue J, Köster J, et al.A laboratory experiment of intact polar lipid degradation in sandy sediments[J].Biogeosciences, 2011,8(9): 2 547-2 560.
[62] Lipp J S, Hinrichs K-U.Structural diversity and fate of intact polar lipids in marine sediments[J].Geochimica et Cosmochimica Acta, 2009,73(22): 6 816-6 833.
[63] Lin Y S, Lipp J S, Elvert M, et al.Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing[J].Environmental Microbiology, 2013,15(5): 1 634-1 646.
[64] Xie S, Lipp J S, Wegener G, et al.Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations[J].Proceedings of the National Academy of Sciences, 2013,110(15): 6 010-6 014.
[65] Harvey H R, Fallon R D, Patton J S.The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J].Geochimica et Cosmochimica Acta, 1986,50(5): 795-804.
[66] Wörmer L, Lipp J S, Schröder J M, et al.Application of two new LC-ESI-MS methods for improved detection of Intact Polar Lipids (IPLs) in environmental samples[J].Organic Geochemistry, 2013,59: 10-21.
[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[3] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[4] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[5] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[6] 孙 青,曾贻善. 单个流体包裹体成分无损分析进展[J]. 地球科学进展, 2000, 15(6): 673-678.
[7] 袁兴中,何文珊. 海洋沉积物中的动物多样性及其生态系统功能[J]. 地球科学进展, 1999, 14(5): 458-463.
[8] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
[9] 梁元博,卢博. 海洋沉积物声学物理和土力学[J]. 地球科学进展, 1991, 6(6): 42-43.
阅读次数
全文


摘要