地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1172 -1181. doi: 10.11867/j.issn.1001-8166.2015.10.1172

上一篇    

深水湖泊增氧理论与技术研究进展
兰晨 1, 2( ), 陈敬安 1, *( ), 曾艳 1, 郭建阳 1, 张润宇 1, 王敬富 1, 杨海全 1, 2, 计永雪 1, 2   
  1. 1.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550081
    2.中国科学院大学,北京 100049
  • 收稿日期:2015-05-12 修回日期:2015-08-26 出版日期:2015-10-20
  • 通讯作者: 陈敬安 E-mail:lanchen12345@126.com;chenjingan@vip.skleg.cn
  • 基金资助:
    国家自然科学基金项目“山区深水型湖泊沉积物内源磷释放的磷酸盐氧同位素示踪研究”(编号:41173125)资助

Advances in Oxygenation Theory and Technology in Deep Lakes

Chen Lan 1, 2( ), Jing’an Chen 1( ), Yan Zeng 1, Jianyang Guo 1, Runyu Zhang 1, Jingfu Wang 1, Haiquan Yang 1, 2, Yongxue Ji 1, 2   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-05-12 Revised:2015-08-26 Online:2015-10-20 Published:2015-10-20

深水湖泊由于自身物理结构特性,易形成垂直热分层。温跃层阻碍了上层水体中氧气向下转移,使得深水层长期处于缺氧状态,加速了沉积物内源污染物的释放,并导致湖泊水质恶化。利用增氧技术提高深水湖泊水体氧含量是抑制内源污染物释放、改善湖泊水质的一项有效措施。系统论述了国内外深水湖泊增氧方法与原理,深入剖析了人工去分层增氧技术、气体提升增氧技术、Speece锥形增氧技术和气泡羽流扩散增氧技术等4种主要增氧技术的结构与优缺点,介绍了典型深水湖泊增氧技术应用实例研究进展,对比分析了主要深、浅水增氧系统的差异,提出了目前增氧技术存在的主要问题,并对未来研究方向进行了展望。

Deep lakes always maintain vertical thermal stratification due to their physical structure. The thermocline prevents the transfer of oxygen from epilimnion to hypolimnion, leading to the formation of anoxic conditions in deeper water, the enhanced release of endogenous pollutants and the deterioration of water quality. Oxygenation is an effective measure to improve the water quality of deep lakes and mitigate the release of endogenous pollutants via the increase of the oxygen level in water. This paper provided an overview of the method and theory of oxygenation in deep lakes. Advantages and limitations of different methods of oxygenation, including artificial destratification, airlift aerators, Speece cone and bubble plume diffusers, were discussed. In addition, challenges and prospects of oxygenation were assessed based on the analyzing of typical examples of oxygenation in deep lakes and the difference in oxygenation system used in deep lakes and shallow lakes.

中图分类号: 

表1 深水湖泊不同增氧方法的对比 [ 8 ]
Table1 Comparison of various deep lake/reservoir aeration approaches [ 8 ]
图1 湖泊增氧技术分类
Fig.1 Classification of primary lake/reservoir aeration techniques
图2 人工去分层增氧技术
Fig.2 Artificial Destratification
图3 全气体提升增氧技术和半气体提升增氧技术
Fig.3 Full-Lift Aerators and Partial-Lift Aerators
图4 Speece锥形增氧技术
Fig.4 Speece Cone
图5 环型气泡羽流扩散增氧技术和线型气泡羽流扩散增氧技术
Fig.5 Circular Bubble-Plume Diffusers and Linear Bubble-Plume Diffusers
表2 深、浅水增氧系统(设备)对比 [ 8 , 52 , 53 ]
Table 2 Comparison of various oxygenation systems between deep and shallow lakes [ 8 , 49 , 50 ]
图6 增氧技术示意图(无比例) [ 8 , 15 ] 1.人工去分层增氧技术;2.全气体提升增氧技术;3.半气体提升增氧技术;4. Speece锥形增氧技术;5.环型气泡羽流扩散增氧技术;6.线型气泡羽流扩散增氧技术
Fig.6 Schematic diagram of traditional aeration systems (no scale) [ 8 , 15 ] 1.Artificial destratification; 2. Full-lift aerators; 3. Partial-lift aerators; 4. Speece cone; 5. Circular bubbleplume diffusers;6.Linear bubble-plume diffusers
[1] Zhang Zhiming.Study on occurrence mechanism of eutrophication in plateau lakes and counter measure[J]. Environmental Science Survey, 2009,28(3):52-56.
[张志明. 高原湖泊富营养化发生机制与防治对策初探[J]. 环境科学导刊, 2009,28(3):52-56.]
[2] Xu Yong.Lake eutrophication and its prevention and control strategies in Karst Plateau area[J]. Hubei Agricultural Sciences, 2011,50(4):708-716.
[徐勇. 喀斯特高原湖泊富营养化及防治对策[J]. 湖北农业科学, 2011,50(4):708-716.]
[3] Han Xiaogang, Huang Yanlin.Statistical analysis of sudden water pollution accidents[J]. Water Resources Protection, 2010,26(1):84-90.
[韩晓刚,黄延林. 我国突发性水污染事件统计分析[J]. 水资源保护, 2010,26(1):84-90.]
[4] Mercier P, Perret J.Aeration station of Lake Bret[J]. Monatsbull Schweiz Ver Gas Wasser-Fachm, 1949, 29(1):25.
[5] Fast A W, Overholtz T.Hypolimnetic oxygenation using liquid-oxygen[J].Water Resources Research, 1975, 11(2):294-299.
[6] Speece R E.Hypolimnion aeration[J].Journal American Water Works Association, 1971, 63(1):6-9.
[7] Whipple W, Tuffey T,Ervin E.Lake hypolimnion oxygenation system[J]. Reaeration Research, 1975:91-108.
[8] Beutel M W, Horne A J.A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality[J]. Lake and Reservoir Management, 1999, 15(4):285-297.
[9] Gafsi M, Kettab A, Benmamar S, et al.Comparative studies of the different mechanical oxygenation systems used in the restoration of lakes and reservoirs[J]. Journal of Food, Agriculture & Environment, 2009, 7(2):815-822.
[10] Little J C. Hypolimnetic aerators—Predicting oxygen—Transfer and hydrodynamics[J].Water Research, 1995, 29(11):2 475-2 482.
[11] McGinnis D F, John C L. Bubble dynamics and oxygen transfer in a Speece Cone[J].Water Science and Technology, 1998, 37(2):285-292.
[12] Wuest A, Norman H B.Bubble plume modeling for restoration[J]. Water Resources Research, 1992, 28(12):3 235-3 250.
[13] McGinnis D F, Little J C,Cumbie W. Nutrient control in Standley Lake: Evaluation of three oxygen transfer devices[C]∥Proceding of the IAWQ/IWSA Joint Specialist Conference Reservoir Management and Water Supply—An Integrated System. Prague: Czech Republic, 1997
[14] The Research of Development and Fature Prospect in Limnology and Watershed Sciences, Secretariat. Advances in science research of lakes and river basin[J]. Journal of Lake Sciences, 2002,14(4):289-300.
[《湖泊及流域学科发展战略研究》秘书组.湖泊及流域科学研究进展与展望[J].湖泊科学,2002,14(4):289-300.]
[15] Singleton V L, John C L.Designing hypolimnetic aeration and oxygenation systems—A review[J]. Environmental of Science and Technology, 2006, 40(24):7 512-7 520.
[16] Teerink J, Martin C.Consideration of artifical destratification in reservoirs of California state water project[J]. Journal American Water Works Association, 1969, 61(9):436-441.
[17] Fast A W.Effects of artifical destratification on primary production and zoobenthos of captian reservoir, California[J]. Water Resources Research, 1973, 9(3):607-623.
[18] Tolland H, Davies J, Johnson D, et al.Design, installation and assessment of a perforated pipe destratification system at Sutton Bingham Reservoir (Wessex Water Authority)[R]∥Water Research Centre Enquiry Report. ER591, Medmenham, 1978.
[19] Steinberg C.Effects of artificial destratification on the phytoplankton populations in a small lake[J]. Journal of Plankton Research, 1983, 5(6):855-864.
[20] Hawkins P R,Griffiths D J.Artificial destratification of a small tropical reservoir: Effects upon the phytoplankton[J]. Hydrobiologia, 1993, 254(3):169-181.
[21] Cong Haibing, Huang Yanlin, Miao Jingguang, et al.Development of rehabilitation device for water body—Water lifting aerator[J]. China Water & Wastewater, 2005,21(3):41-45.
[丛海兵, 黄延林,缪晶广,等.水体修复装置——扬水曝气器的开发[J]. 中国给水排水, 2005,21(3):41-45.]
[22] Cong Haibing, Huang Yanlin, Zhao Jianwei, et al.Application of the technology of lifting water and aeration for improving water quality[J]. Environmental Pollution & Control, 2006, 28(3):215-218.
[丛海兵, 黄延林,赵建伟,等. 扬水曝气技术在水源水质改善中的应用[J]. 环境污染与防治, 2006,28(3):215-218.]
[23] Ma Yue, Huang Yanlin, Cong Haibing, et al.Application of the technology of water-lifting and aeration on water quality in-situ restoration in a deep channel reservior[J]. Water & Wastewater Engineering, 2012,38(4):7-13.
[马越, 黄延林,丛海兵,等. 扬水曝气技术在河道型深水水库水质原位修复中的应用[J]. 城镇给排水, 2012,38(4):7-13.]
[24] Delnoij E, Lammers F A, Kuipers J A, et al. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model[J]. Chemical Engineering Science, 1997, 52(9):1 429-1 458.
[25] Lorenzen M, Fast A W.A Guide to Aeration/Circulation Techniques for Lake Management[M]. Washington: Environmental Protection Agency, 1977.
[26] Taggart C,McQueen D. A model for the design of hypolimnetic aerators[J]. Water Research, 1982, 16(6):949-956.
[27] Ashley K I.Hypolimnetic aeration: Practical design and application[J]. Water Research, 1985, 19(6):735-740.
[28] Del Vecchio D C, Little J C. Predicting water flow rate in hypolimnetic aerators, poster presented at international association on water quality[C]∥Biennial Conference. Singapore, 1995.
[29] Burris V L,McGinnis D F , Little J C,et al. Predicting oxygen transfer and water flow rate in airlift aerators[J]. Water Research, 2002, 36(18):4 605-4 615.
[30] Ashley K I.Hypolimnetic aeration of a naturally eutrophic lake-physical and chemical effects[J].Physical and Chemical Effects, 1983, 40(9):1 343-1 359.
[31] Soltero R A, Sexton L M, Ashley K I, et al.Partial and full lift hypolimnetic aeration of medical lake, Wa to improve water-quality[J]. Water Research, 1994, 28(11):2 297-2 308.
[32] Speece R E.The use of pure oxygen in river and impoundment aeration[C]∥24th Annual Purdue Industrial Waste Conference. Purdue University, 1969.
[33] Speece R E, Madrid M,Needham K.Downflow bubble contact aeration[J]. Journal of the Sanitary Engineering Division, 1971, 97(4):433-441.
[34] Speece R E, Rayyan F, Murfee G.Alternative considerations in the oxygenation of reservoir discharges and rivers[J]. Applications of Commercial Oxygen to Water and Wastewater Systems, 1973,9(3):342-361.
[35] Doke J L, Funk W H, Juul S T, et al.Habitat availability and benthic invertebrate population changes following alum treatment and hypolimnetic oxygenation in Newman Lake, Washington[J]. Journal of Freshwater Ecology, 1995, 10(2):87-102.
[36] Ashley K I, Mavinic D S, Hall K J.Oxygenation performance of a laboratory-scale Speece Cone hypolimnetic aerator: Preliminary assessment[J]. Canadian Journal of Civil Engineering, 2008, 35(7):663-675.
[37] Ashley K, Fattah K, Mavinic D, et al. Analysis of design factors influencing the oxygen transfer of a pilot-scale speece cone hypolimnetic aerator[J]. Journal of Environmental Engeneering, 2013, 140(3):04013011-1-04013011-9.
[38] Horne A J.Limnology and Water Quality of Camanche Reservoir in the 1987-88 Drought as It Relates to the Fish Facility Problems[R]. Oakland California: East Bay Municipal Vtility District, 1989: 5-2.
[39] Moore B C, Cross B K, Beutel M, et al.Newman Lake restoration: A case study Part III. Hypolimnetic oxygenation[J]. Lake and Reservoir Management, 2012, 28(4):311-327.
[40] Rayyan F, Speece R E.Hydrodynamics of bubble plumes and oxygen absorption in stratified impoundments[J]. Progress in Water Technology, 1977, 9:129-142.
[41] Imboden D.Restoration of a Swiss lake by internal measures: Can models explain reality[C]∥EWPCA International Congress: Lakes Pollution and Recovery. Proceedings-preprints, 1980:29-40.
[42] Prepas E, Field K, Murphy T, et al. Introduction to the Amisk Lake Project: Oxygenation of a deep, eutrophic lake[J].Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(9):2 105-2 110.
[43] Prepas E, Burke J.Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep, eutrophic lake with high internal phosphorus loading rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(9):2 111-2 120.
[44] Schierholz E L, Gulliver J S, Wilhelms S C, et al.Gas transfer from air diffusers[J]. Water Research, 2006, 40(5):1 018-1 026.
[45] McGinnis D F, Lorke A, Wuest A, et al. Interaction between a bubble plume and the near field in a stratified lake[J]. Water Resources Research, 2004, 40(10):11.
[46] Singleton V L, Gantzer P, Little J C.Linear bubble plume model for hypolimnetic oxygenation: Full-scale validation and sensitivity analysis[J]. Water Resources Research, 2007, 43(2):12.
[47] Little J C, McGinnis D F. Hypolimnetic oxygenation predicting performance using a discrete-bubble model[J]. Water Science & Technology: Water Supply, 2001, 1(4):185-191.
[48] Little J,McGinnis D. Hypolimnetic oxygenation: Predicting performance using a discrete-bubble model[J]. Water Science & Technology: Water Supply, 2001, 1(4):185-191.
[49] Sun Congjun, Zhang Mingxu. Application of aeration technique in river pollution control[J]. Engineering and Technology,2001,1(4):12-20.
[孙从军,张明旭. 河道曝气技术在河流污染治理中的应用[J]. 工程与技术, 2001,1(4):12-20.]
[50] Liu Haihong, Li Xianning, Song Hailiang.Re-oxygenation technology for prevention and control of black water in shallow lakes[J].Journal of Southeast University, 2015,45(3):526-530.
[刘海洪, 李先宁,宋海亮.浅水湖泊防控黑臭水体复氧技术[J]. 东南大学学报, 2015,45(3):526-530.]
[51] Rippey B, McSorley C. Oxygen depletion in lake hypolimnia[J]. Limnology and Oceanography, 2009, 54(3):905-916.
[52] Muller B, Bryant L D, Matzinger A, et al.Hypolimnetic oxygen depletion in eutrophic lakes[J]. Environmental Science & Technology, 2012, 46(18):9 964-9 971.
[53] Yang Yongqiong, Chen Jing’an, Wang Jingfu, et al.Research progress of sediments phosphorus in-situ inactivation[J]. Advances in Earth Science, 2013,28(6):674-684.
[杨永琼, 陈敬安, 王敬富, 等.沉积物磷原位钝化技术研究进展[J]. 地球科学进展, 2013,28(6):674-684.]
[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[4] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[5] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[6] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[9] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[10] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[11] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[12] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[13] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[14] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[15] 张虎才, 常凤琴, 段立曾, 李华勇, 张云鹰, 蒙红卫, 文新宇, 吴汉, 路志明, 毕荣鑫, 张扬, 赵帅营, 康文刚. 滇池水质特征及变化[J]. 地球科学进展, 2017, 32(6): 651-659.
阅读次数
全文


摘要