地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 124 -136. doi: 10.11867/j.issn.1001-8166.2020.015

综述与评述 上一篇    下一篇

水下沉积物重力流与海底扇相模式研究进展
傅焓埔( ),刘群,胡修棉( )   
  1. 南京大学地球科学与工程学院, 江苏 南京 210023
  • 收稿日期:2019-12-05 修回日期:2020-01-14 出版日期:2020-02-10
  • 通讯作者: 胡修棉 E-mail:huxm@nju.edu.cn
  • 基金资助:
    国家自然科学基金杰出青年科学基金项目“沉积学”(41525007)

Review on Subaqueous Sediment Gravity Flow and Submarine Fan

Hanpu Fu( ),Qun Liu,Xiumian Hu( )   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2019-12-05 Revised:2020-01-14 Online:2020-02-10 Published:2020-03-24
  • Contact: Xiumian Hu E-mail:huxm@nju.edu.cn
  • About author:Fu Hanpu (1993-), male, Jinhua City, Zhejiang Province, Ph.D student. Research areas include sedimentary tectonics. E-mail: hanpufunju@163.com
  • Supported by:
    the National Natural Science Foundation of China "Sedimentology"(41525007)

水下沉积物重力流将大量沉积物搬运至海底,形成了地球上最大的沉积体系——海底扇。综合前人研究成果,梳理水下沉积物重力流的基本概念、分类和识别标志,介绍了现代观测的重要结果和海底扇相模式的研究进展。浊流和碎屑流是重力流最主要的两类流体,浊流为逐层沉积,发育正粒序;碎屑流为整体沉积,垂向无序。由浊流转换为碎屑流的重力流称混合流,陆上洪水入海(湖)形成的浊流称异重流。现代观测的结果表明:浊流底部存在高密度层,横向结构并不都是涌浪型,浊流的持续时间可以长达1周。海底扇通常采用组构分析和层级分类进行研究,由水道、天然堤、朵体、远洋—半远洋沉积和块体搬运沉积组成。水道侧向延伸窄,发育侵蚀结构;天然堤由薄层泥—粉砂质浊积岩组成,横向呈楔形变薄;朵体侧向延伸宽,颗粒粒度集中,侵蚀结构较少。水道的层级从低到高依次为水道单元、水道复合体和水道复合体群。朵体的层级从低到高依次为层、朵体元素、朵体和朵体复合体。

Subaqueous sediment gravity flow is the volumetrically most important process transporting sediment across our planet, which forms its largest sediment accumulations (submarine fan). Based on the previous studies, we tried to clear up the concept, classification and identification of subaqueous sediment gravity flow, and introduced the progress of modern direct observation and submarine fan model. Turbidity current and debris flow are two of the most important parts of the gravity flow, the former deposits layer by layer with normal gradation while the latter is en masse settling with chaotic disorder. The turbidity current transformed into the debris flow during the transportation is called hybrid flow. The hyperpycnal flow is the turbidity current formed by flood discharges into the ocean/lake. Modern direct observations show that the turbidity current can contain dense basal layers and last for a week. The structure of turbidity current can be different from those surge-like turbidity current observed in laboratory. Submarine fans are mainly composed of channel, levee, lobe, background deposits and mass transport deposits, which should be studied by architecture analysis and hierarchical classification. The channel deposits extend narrowly with abundant erosion structures; levee deposits are composed of thin layer mud-silty turbidites, wedge thinning laterally; the lobe deposits extend well laterally with narrow range of grain size. The hierarchy of channel deposits is channel unit, channel complex and channel complex system. The hierarchy of lobe deposits is bed, lobe element, lobe and lobe complex.

中图分类号: 

表1 水下沉积物重力流的分类(据参考文献[ 28 ]修改)
Table 1 The classification of subaqueous sediment gravity flow modified after reference[ 28 ])
图1 水下沉积物重力流的分类(据参考文献[ 29 ]修改)
Fig.1 The classification of subaqueous sediment gravity flow modified after reference [ 29 ])
表2 对水下沉积物重力流的分类 [ 3 ]
Table 2 The classification of subaqueous sediment gravity flow [ 3 ]
图2 水下沉积物重力流的沉积序列[ 3 , 34 , 35 ]
(a) 浊流沉积,显示正递变与牵引流结构 [ 3 ];(b) 碎屑流沉积,整体混乱无序 [ 3 ];(c) 混合流沉积,底部为浊流沉积,向上为碎屑流沉积,顶部为稀释的浊流沉积 [ 34 ];(d) 异重流沉积,底部发育逆粒序,向上为典型浊流沉积,发育侵蚀界面 [ 35 ]
Fig.2 The sedimentary sequences of subaqueous sediment gravity flow[ 3 , 34 , 35 ]
(a) Turbidite with normal grading and traction flow structure [ 3 ]; (b) Debrite with chaotic disorder [ 3 ]; (c) Hybrid event bed composed by bottom turbidite, milled debrite and upper dilute turbidity current deposits [ 34 ]; (d) Hyperpycnal flow deposits with bottom inverse grading and erosive contacts [ 35 ]
图3 水下沉积物重力流沉积的野外照片
(a) 发育鲍马序列的浊流沉积,Ta发育正粒序,Tb发育平行层理,Tc发育交错层理,Td发育水平层理;(b)块状厚层砂岩,无粒序;(c) 碎屑流沉积与浊流沉积,其中碎屑流沉积含大量杂乱无序的碎屑 [ 36 ];(d) 混合流沉积,见“三明治结构”,由底部的浊流沉积、中间的碎屑流沉积和顶部较为稀释的浊流沉积组成
Fig.3 Field photographs of subaqueous sediment gravity flow deposits
(a) Turbidite with Bouma sequence, Ta with normal grading, Tb with parallel bedding, Tc with cross bedding, Td with horizontal bedding; (b) Massive turbidite with non-grading; (c) Debrite and turbidite, of which the debrite comprise many disordered clasts [ 36 ]; (d) Hybrid event bed with bottom turbidite, middle debrite and upper dilute turbidity current deposits
图4 异重流航拍照片[ 35 ]
流体在下潜区后沿海底运动,箭头指示水流方向
Fig.4 Aerial photograph of a hyperpycnal flow[ 35 ]
The current flow along the seafloor after plunging, arrow indicates
the flow direction
图5 刚果峡谷与实验模拟的浊流结构对比[ 21 ]
(a) 实验模拟的涌浪式浊流结构,头部大而慢;(b) 刚果峡谷的浊流结构,头部小而快;红色实线指示流体最大速率,蓝色虚线指示流体某一时刻的垂向速率剖面,箭头指示流体相对前缘的运动方向,箭头越长速率越小
Fig.5 Turbidity current structure in laboratory experiments and Congo Canyon[ 21 ]
(a) Surge-like turbidity current in the typical laboratory experiment with a big and slow head; (b) Turbidity current in the Congo Canyon with a small and fast head. Temporal changes in maximum flow velocity are shown by red lines, and velocity profile shapes are shown by blue dotted lines, arrows denote relative movement of sediment-laden fluid with respect to the flow front
图6 蒙特利峡谷浊流演化图[ 22 ]
Fig.6 The evolution of flow structure and composition in the Monterey Canyon[ 22 ]
图7 海底扇沉积单元组成示意图[ 58 ]
Fig.7 The schematic diagram of depositional elements in submarine fan[ 58 ]
图8 海底扇水道类型示意图[ 56 ]
Fig.8 The channel types of submarine fan[ 56 ]
图9 海底扇沉积单元的野外照片
(a) 水道沉积,沉积物颗粒粗(粗砂—砾),底部发育槽模;(b) 天然堤与水道沉积,天然堤沉积物颗粒细(泥—粉砂),水道底部发育槽模;(c) 朵体沉积,砂岩层侧向延伸良好 [ 66 ]
Fig.9 Field photographs of the depositional elements in submarine fan
(a) Channel filled by coarse sands and gravels, flute developed at the base of channel; (b) Levee covered by channel, levee is composed of mud and fine sand, flute developed at the base of channel; (c) Lobe stacked by continuous sandstone layers [ 66 ]
图10 海底扇水道单元模式[ 54 ]
(a) 欠充填水道单元,发育加积天然堤,半合并化的不同岩相,泥质/粉砂质盖层,向上变细的废弃相;(b)充填水道单元,发育欠加积天然堤/漫滩沉积,合并化的相似岩相,缺少泥质/粉砂质盖层和废弃相
Fig.10 Schematic representations of common fill styles of under-filled and filled channel elements[ 54 ]
(a) Under-filled channel element with moderate to high rate of overbank aggradation, semi-amalgamated highly heterolithic fill,common shale/silt drapes, and capped by upward fining abandonment-fill facies; (b) Filled channel element with low rate of overbank aggradation, amalgamated and less heterolithic fill, and rare shale/silt drapes
图11 朵体层级分类[ 69 , 70 ]
(a) 垂向剖面图 [ 69 ]; (b) 平面图 [ 70 ]; (c) 野外照片 [ 69 ]; B: 层,LE: 朵体元素,L: 朵体,LC: 朵复合体
Fig.11 Hierarchical scheme of lobes[ 69 , 70 ]
(a) Vertical profile [ 69 ]; (b) Plan form view [ 70 ]; (c) Field photograph [ 69 ]; B: Bed, LE: Lobe Element, L: Lobe, LC: Lobe Complex
图12 朵体受限类型示意图[ 71 ]
(a) 完全受限;(b) 侧向受限;(c) 前缘受限;(d) 不受限;箭头指示水流方向
Fig.12 Different types of confinement in lobes[ 71 ]
(a) Ponded; (b) Laterally confined; (c) Frontally confined; (d) Unconfined; Arrows denote flow direction
1 Talling P J, Paull C K, Piper D J. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows [J]. Earth-Science Reviews, 2013, 125: 244-287.
2 Paull C K, Talling P J, Maier K L, et al. Powerful turbidity currents driven by dense basal layers [J]. Nature Communications, 2018, 9(1): 4 114.
3 Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types [J]. Sedimentology, 2012, 59(7): 1 937-2 003.
4 Sun Shu, Li Jiliang. Researches on turbidity and other gravity flow sedimentation in China [J]. Acta Sedimentologica Sinica, 1984, 2(4): 1-7.
孙枢, 李继亮. 我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议 [J]. 沉积学报, 1984, 2(4): 1-7.
5 Fang Aimin, Li Jiliang, Hou Quanlin. Sedimentation of turbidity currents and relative gravity flows: A review [J]. Geological Review, 1998, 44(3): 270-280.
方爱民, 李继亮, 侯泉林. 浊流及相关重力流沉积研究综述 [J]. 地质论评, 1998, 44(3): 270-280.
6 Li Xianghui, Wang Chengshan, Jin Wei, et al. A review on deep-sea sedimentation theory: Significances to oil-gas exploration [J]. Acta Sedimentologica Sinica, 2009, 27(1): 77-86.
李祥辉, 王成善, 金玮, 等. 深海沉积理论发展及其在油气勘探中的意义 [J]. 沉积学报, 2009, 27(1): 77-86.
7 Li Xiangdong, Chen Haiyan, Chen Hongda. Deep-water combined-flow deposits of the upper ordovician lashenzhong formation in Zhuozishan area, western margin of Ordos Basin[J]. Advances in Earth Science, 2019, 34(12): 1 301-1 315.
李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1 301-1 315.
8 Li Lin, Qu Yongqiang, Meng Qingren, et al. Gravity flow sedimentation: Theoretical studies and field identification [J]. Acta Sedimentologica Sinica, 2011, 29(4): 677-688.
李林, 曲永强, 孟庆任, 等. 重力流沉积:理论研究与野外识别 [J]. 沉积学报, 2011, 29(4): 677-688.
9 Li Yun, Zheng Rongcai, Zhu Guojin, et al. Reviews on sediment gravity flow [J]. Advances in Earth Science, 2011, 26(2): 157-165.
李云, 郑荣才, 朱国金, 等. 沉积物重力流研究进展综述 [J]. 地球科学进展, 2011, 26(2): 157-165.
10 Gao Hongcan, Zheng Rongcai, Wei Qinlian, et al. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents [J]. Advances in Earth Science, 2012, 27(8): 815-827.
高红灿, 郑荣才, 魏钦廉, 等. 碎屑流与浊流的流体性质及沉积特征研究进展 [J]. 地球科学进展, 2012, 27(8): 815-827.
11 Li Xiangbo, Wei Pingsheng, Liu Huaqing, et al. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model [J]. Geological Review, 2013, 59(4): 607-614.
李相博, 卫平生, 刘化清, 等. 浅谈沉积物重力流分类与深水沉积模式 [J]. 地质论评, 2013, 59(4): 607-614.
12 Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submenber in Member 3 of Shahejie Formation in Jiyang depression [J]. Acta Petrolei Sinica, 2015, 36(9): 1 048-1 059.
杨田, 操应长, 王艳忠, 等. 深水重力流类型,沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例 [J]. 石油学报, 2015, 36(9): 1 048-1 059.
13 Pei Yu, He Youbin, Li Hua, et al. Discuss about relationship between high-density turbidity current and sandy debris flow [J]. Geological Review, 2015, 61(6): 1 281-1 292.
裴羽, 何幼斌, 李华, 等. 高密度浊流和砂质碎屑流关系的探讨 [J]. 地质论评, 2015, 61(6): 1 281-1 292.
14 Sun Guotong. A review of deep-water gravity-flow deposition research [J]. Geological Science and Technology Information, 2015, 34(3): 30-36.
孙国桐. 深水重力流沉积研究进展 [J]. 地质科技情报, 2015, 34(3): 30-36.
15 Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
16 Li Liyang. Current advances in the research of turbidity current deposits: Reinterpretation of the Bouma sequence and submarine fan deposits [J]. Sedimentary Geology and Tethyan Geology, 2015, 35(4): 106-112.
李利阳. 浊流沉积研究的新进展: 鲍马序列, 海底扇的重新审视 [J]. 沉积与特提斯地质, 2015, 35(4): 106-112.
17 Wang Pinxian. Deep sea sediments and earth system [J]. Marine Geology and Quaternary Geology, 2009, 29(4): 1-11.
汪品先. 深海沉积与地球系统 [J]. 海洋地质与第四纪地质, 2009, 29(4): 1-11.
18 Xu J P. Normalized velocity profiles of field-measured turbidity currents [J]. Geology, 2010, 38(6): 563-566.
19 Xu J P, Barry J P, Paull C K. Small-scale turbidity currents in a big submarine canyon [J]. Geology, 2013, 41(2): 143-146.
20 Migeon S, Mulder T, Savoye B, et al. Hydrodynamic processes, velocity structure and stratification in natural turbidity currents: Results inferred from field data in the Var Turbidite System [J]. Sedimentary Geology, 2012, 245: 48-62.
21 Azpiroz-Zabala M, Cartigny M J, Talling P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons [J]. Science Advances, 2017, 3(10): e1700200.
22 Symons W O, Sumner E J, Paull C K, et al. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon [J]. Geology, 2017, 45(4): 367-370.
23 Weimer P, Slatt R M. Petroleum Systems of Deepwater Settings [M]. Tulsa: Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 2004.
24 Pickering K, Hiscott R. Deep Marine Systems: Processes, Deposits, Environments, Tectonic and Sedimentation [M]. Oxford: American Geophysical Union and Wiley, 2015.
25 Johnson D W. The Origin of Submarine Canyons: A Critical Review of Hypotheses [M]. New York: Columbia University Press, 1939.
26 Kuenen P H, Migliorini C. Turbidity currents as a cause of graded bedding [J]. The Journal of Geology, 1950, 58(2): 91-127.
27 Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition [M]//SEPM Pacific Section, Short Course Lecture Notes, 1973: 1-38.
28 Lowe D R. Sediment gravity flows: II Depositional models with special reference to the deposits of high-density turbidity currents [J]. Journal of Sedimentary Research, 1982, 52(1):279-297.
29 Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
30 Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits [J]. Sedimentology, 2001, 48(2): 269-299.
31 Dott Jr R. Dynamics of subaqueous gravity depositional processes [J]. AAPG Bulletin, 1963, 47(1): 104-128.
32 Kuenen P H. Matrix of turbidites: Experimental approach [J]. Sedimentology, 1966, 7(4): 267-297.
33 Middleton G V. Experiments on density and turbidity currents: III. Deposition of sediment [J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475-505.
34 Haughton P, Davis C, Mccaffrey W, et al. Hybrid sediment gravity flow deposits-classification, origin and significance [J]. Marine and Petroleum Geology, 2009, 26(10): 1 900-1 918.
35 Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review [J]. Marine And Petroleum Geology, 2003, 20(6/8): 861-882.
36 Grundv?g S A, Johannessen E P, Helland‐Hansen W, et al. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen [J]. Sedimentology, 2014, 61(2): 535-569.
37 Haughton P D, Barker S P, Mccaffrey W D. ‘Linked’ debrites in sand-rich turbidite systems-origin and significance [J]. Sedimentology, 2003, 50(3): 459-482.
38 Hodgson D M. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa [J]. Marine and Petroleum Geology, 2009, 26(10): 1 940-1 956.
39 Davis C, Haughton P, Mccaffrey W, et al. Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS [J]. Marine and Petroleum Geology, 2009, 26(10): 1 919-1 939.
40 Pouderoux H, J-N Proust, Lamarche G, et al. Postglacial (after 18ka) deep-sea sedimentation along the Hikurangi subduction margin (New Zealand): Characterisation, timing and origin of turbidites [J]. Marine Geology, 2012, 295: 51-76.
41 Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea [J]. Journal of Sedimentary Research, 2006, 76(1): 60-73.
42 Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics [J]. Sedimentary Geology, 2016, 337: 36-54.
43 Richards M, Bowman M, Reading H. Submarine-fan systems I: Characterization and stratigraphic prediction [J]. Marine and Petroleum Geology, 1998, 15(7): 689-717.
44 Barnes N E, Normark W R. Diagnostic parameters for comparing modern submarine fans and ancient turbidite systems [M]//Submarine Fans and Related Turbidite Systems. New York, NY:Springer, 1985: 13-14.
45 Shanmugam G, Moiola R. Submarine fans: Characteristics, models, classification, and reservoir potential [J]. Earth-Science Reviews, 1988, 24(6): 383-428.
46 Menard Jr H W. Deep-sea channels, topography, and sedimentation [J]. AAPG Bulletin, 1955, 39(2): 236-255.
47 Enos P. Anatomy of a flysch [J]. Journal of Sedimentary Research, 1969, 39(2): 680-723.
48 Walker J, Massingill J. Slump features on the Mississippi Fan, northeastern Gulf of Mexico [J]. Geological Society of America Bulletin, 1970, 81(10): 3 101-3 108.
49 Normark W R. Growth patterns of deep-sea fans [J]. AAPG Bulletin, 1970, 54(11): 2 170-2 195.
50 Mutti E, Ricci Lucchi F. Turbidites of the northern Apennines: Introduction to facies analysis [J]. International Geology Review, 1972, 20(2): 125-166.
51 Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps [J]. AAPG Bulletin, 1978, 62(6): 932-966.
52 Normark W R, Posamentier H, Mutti E. Turbidite systems: State of the art and future directions [J]. Reviews of Geophysics, 1993, 31(2): 91-116.
53 Mayall M, Jones E, Casey M. Turbidite channel reservoirs—Key elements in facies prediction and effective development [J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
54 Mchargue T, Pyrcz M J, Sullivan M D, et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions [J]. Marine and Petroleum Geology, 2011, 28(3): 728-743.
55 Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits [J]. Earth-Science Reviews, 1985, 22(4): 261-308
56 Clark J D, Pickering K T. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration [J]. AAPG Bulletin, 1996, 80(2): 194-220.
57 Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system [J]. AAPG Bulletin, 1994, 78(5): 792-822.
58 Meiburg E, Kneller B. Turbidity currents and their deposits [J]. Annual Review of Fluid Mechanics,2010,42: 135-156.
59 Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: Implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235.
60 Mattern F. Ancient sand-rich submarine fans: Depositional systems, models, identification, and analysis [J]. Earth-Science Reviews, 2005, 70(3/4): 167-202.
61 Cullis S, Colombera L, Patacci M, et al. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems [J]. Earth-Science Reviews, 2018, 179: 38-71.
62 Clark J, Kenyon N, Pickering K. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans [J]. Geology, 1992, 20(7): 633-636.
63 Mulder T. Gravity processes and deposits on continental slope, rise and abyssal plains [M]// Huneke H, Mulder T. Deep-sea Sediments, Developments in Sedimentology. Amsterdam: Elsevier, 2011: 25-148.
64 Nakajima T, Kneller B C. Quantitative analysis of the geometry of submarine external levées [J]. Sedimentology, 2013, 60(4): 877-910.
65 Mulder T, Etienne S. Lobes in deep-sea turbidite systems: State of the art [J]. Sedimentary Geology, 2010, 3(229): 75-80.
66 Liu Q, Kneller B, Fallgatter C, et al. Tabularity of individual turbidite beds controlled by flow efficiency and degree of confinement [J]. Sedimentology, 2018, 65(7): 2 368-2 387.
67 Jegou I, Savoye B, Pirmez C, et al. Channel-mouth lobe complex of the recent Amazon Fan: The missing piece [J]. Marine Geology, 2008, 252(1/2): 62-77.
68 S?mme T, Helland-Hansen W, Martinsen O, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems [J]. Basin Research, 2009, 21(4): 361-387.
69 Prelat A, Hodgson D, Flint S. Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa [J]. Sedimentology, 2009, 56(7): 2 132-2 154.
70 Prelat A, Covault J, Hodgson D, et al. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes [J]. Sedimentary Geology, 2010, 232(1/2): 66-76.
71 T?kés L, Patacci M. Quantifying tabularity of turbidite beds and its relationship to the inferred degree of basin confinement [J]. Marine and Petroleum Geology, 2018, 97: 659-671.
72 Li Lei, Wang Yingmin, Zhang Lianmei, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta [J]. Science in China (Series D), 2010, 53: 1 169-1 175.
李磊, 王英民, 张莲美, 等. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应 [J]. 中国科学: D辑, 2010, 40(11): 1 591-1 597.
73 Spychala Y T, Hodgson D M, Flint S, et al. Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa [J]. Sedimentary Geology, 2015, 322: 67-81.
[1] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[2] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[5] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[6] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[7] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[8] 李云,郑荣才,朱国金,胡晓庆. 沉积物重力流研究进展综述[J]. 地球科学进展, 2011, 26(2): 157-165.
[9] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[10] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[11] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.
阅读次数
全文


摘要