地球科学进展 ›› 2007, Vol. 22 ›› Issue (9): 907 -913. doi: 10.11867/j.issn.1001-8166.2007.09.0907

所属专题: IODP研究

IODP研究 上一篇    下一篇

深水沉积物波及其在南海研究之现状
钟广法 1,李前裕 1,郝沪军 2,王嘹亮 3   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092;2.中海石油(中国)有限公司深圳分公司,深圳 518067;3.广州海洋地质调查局,广东 广州 510760
  • 收稿日期:2007-06-04 修回日期:2007-08-20 出版日期:2007-09-15
  • 通讯作者: 钟广法(1964-),男,湖南临澧人,教授,博士生导师,主要从事地震、测井解释和沉积学研究.E-mail:gfz@mail.tongji.edu.cn E-mail:gfz@mail.tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“南海深海测井记录中的气候周期和事件”(编号:40476030)和“晚中新世西太平洋暖池阶段性形成的古海洋特征”(编号:40576031);国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030)联合资助.

Current Status of Deep-water Sediment Wave Studies and the South China Sea Perspectives

ZHONG Guang-fa 1, LI Qian-yu 1, HAO Hu-jun 2, WANG Liao-liang 3   

  1. 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;2. Shenzhen Branch of CNOOC Limited, Shenzhen 518067, China;3.Guangzhou Marine Geological Survey, Guangzhou 510760, China
  • Received:2007-06-04 Revised:2007-08-20 Online:2007-09-15 Published:2007-09-10

深水沉积物波的研究始于20世纪50年代。根据成因和结构特征,可以将深水沉积物波划分为细粒底流、细粒浊流、粗粒底流和粗粒浊流等类型。不同类型的沉积物波具有不同的形态、物质组成及分布特征。已提出的深水沉积物波的形成模式主要有背流波模式、逆行沙波模式、内波模式及底形和斜坡失稳混合模式等。1994年太阳号95航次和1999年ODP184航次揭示并证实,南海北部东沙岸外1144站所处的深水陆坡区发育有一高速沉积物牵引体。根据最新的地震资料分析发现,该牵引体实际上由一系列逆陆坡向上倾方向迁移的沉积物波组成,这一发现对于南海北部大陆边缘古海洋、古环境和古气候研究,以及南海深水油气勘探具有重要意义。

Research on deep-water sediment waves was initiated in the 1950's. So far, significant progress has been achieved. It is been known that deep-water sediment waves are generated mainly by bottom currents or turbidity currents. Four main catalogues of deep-water sediment waves have been recognized according to their grain size of component sediments and formation processes: fine-grained bottom current sediment waves, coarse-grained bottom current sediment waves, finegrained turbidity current sediment waves, and coarse-grained turbidity current sediment waves. Models presented for the formation of deep-water sediment waves include lee-wave model, antidune model, internal wave model and mixed bedform and failure model. Newly-acquired high-resolution seismic data revealed that the sediment drift with high deposition rates on the slope offshore Dongsha Islands, northern South China Sea was actually composed of a series of sediment waves migrated upslope. This finding is of great significance not only to the reconstruction of paleoceanography, paleoenvironment, paleo-tectonics, and paleoclimate, but also to deep-water petroleum exploration in the South China Sea.

中图分类号: 

[1]Wynn R B, Stow D A V. Recognition and interpretation of deep-water sediment waves: Implications for palaeoceanography, hydrocarbon exploration and flow process interpretation[J].Marine Geology,2002,192:1-3.
[2]Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century[J].Marine and Petroleum Geology,2000,17:125-135.
[3]Wynn R B, Masson D G, Stow D A V, et al. Turbidity current sediment waves on the submarine slopes of the western Canary Islands[J].Marine Geology,2000,163:185-198.
[4]Embley R W, Langseth M G. Sedimentation processes on the continental rise of northeastern South America[J].Marine Geology,1977,25:279-297.
[5]Wynn R B, Weaver P P E, Ercilla G, et al. Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: New insights into the formation of sediment waves by turbidity currents[J].Sedimentology,2000,47:1 181-1 197.
[6]Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J].Marine Geology,2002,192:7-22.
[7]Normark W R, Hess G R, Stow D A V, et al. Sediment waves on the Monterey Fan levee: A preliminary physical interpretation[J].Marine Geology,1980,37:1-18.
[8]Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J].Marine Geology,2002,192:23-58.
[9]Nakajima T, Satoh M, Okamura Y. Channel-levee complexes, terminal deep-sea fan and sediment wave fields associated with the Toyama deep-sea channel system in the Japan sea[J].Marine Geology,1998,149:25-41.
[10]McHugh C M G, Ryan W B F. Sedimentary features associated with channel overbank flow: Examples from the Monterey Fan[J].Marine Geology,2000,163:199-215.
[11]Migeon S, Savoye B, Faugeres J-C. Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J].Sedimentary Geology,2000,133:265-293.
[12]Nakajima T, Satoh M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan sea[J].Sedimentology,2001,48:435-463.
[13]Damuth J E. Migrating sediment waves created by turbidity currents in the northern south China basin[J].Geology,1979,7:520-523.
[14]Ercilla G, Alonso B, Wynn R B, et al. Turbidity current sediment waves on irregular slopes: Observations from the Orinoco sediment-wave field[J].Marine Geology,2002,192:171-187.
[15]Ercilla G, Wynn R B, Alonso B, et al. Initiation and evolution of turbidity current sediment waves in the Magdalena Turbidite System[J].Marine Geology,2002,192:153-169.
[16]Gonthier E, Faugères J-C, Gervais A, et al. Quaternary sedimentation and origin of the Orinoco sediment-wave field on the Demerara continental rise (north-eastern margin of South America)[J].Marine Geology,2002, 192: 189-214.
[17]Lee H J, Syvitski J P M, Parker G, et al. Distinguishing sediment waves from slope failure deposits: Field examples, including the Humboldt Slide' and modelling results[J].Marine Geology,2002,192:79-104.
[18]Lewis K B, Pantin H M. Channel-axis, overbank and drift sediment waves in the southern Hikurangi Trough, New Zealand[J].Marine Geology,2002,192:123-151.
[19]Flood R D, Shor A N, Manley P D. Morphology of abyssal mudwaves at project MUDWAVES sites in the Argentine basin[J].Deep-Sea Research,1993,40:859-888.
[20]Manley P L, Caress D W. Mudwaves on the Gardar sediment drift, NE Atlantic[J].Paleoceanography,1994,9:973-988.
[21]Howe J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J].Sedimentology,1996,43:219-234.
[22]Flood R D, Giosan L. Migration history of a fine-grained abyssal sediment wave on the Bahama Outer Ridge[J].Marine Geology,2002,192:259-273.
[23]Masson D G, Howe J A, Stoker M S. Bottom current sediment waves, sediment drifts and contourites in the northern Rockall Trough[J].Marine Geology,2002,192:215-237.
[24]von Lom-Keil H, Speiss V, Hopfauf V. Fine-grained sediment waves on the western flank of the Zapiola Drift, Argentine Basin-Evidence for variations in Late Quaternary bottom flow activity[J].Marine Geology,2002,192:239-258.
[25]Ediger V, Velegrakis A F, Evans G. Upper slope sediment waves in the Cilician Basin, north-eastern Mediterranean[J].Marine Geology,2002,192:321-333.
[26]Clarke J E H, Shor A N, Piper D J W, et al. Large-scale current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current[J].Sedimentology,1990,37:613-629.
[27]Piper D J W, Kontopoulos N. Bedforms in submarine channels: comparison of ancient examples from Greece with studies of recent turbidite systems[J].Journal of Sedimentary Research,1994,64:247-252.
[28]Kidd R B, Lucchi R G, Gee M, et al. Sedimentary processes in the Stromboli Canyon and Marsili basin, SE Tyrrhenian sea: Results from sidescan sonar surveys[J].Geo-Marine Letter,1998,18:146-154.
[29]Morris S A, Kenyon N H, Limonov A F, et al. Downstream changes of large-scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean: Implications for paleoflow reconstruction[J].Sedimentology,1998,45:365-377. 
[30]Dorn W U, Werner F. The contour-current flow along the southern Iceland-Faeroe Ridge as documented by its bedforms and asymmetrical channel fillings[J].Sedimentary Geology,1993,82:47-59.
[31]Kenyon N H, Akhmetzhanov A M, Twichell D C. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands[J].Marine Geology,2002,192:297-307.
[32]Flood R D. A lee wave-model for deep-sea mudwave activity[J].Deep-Sea Resarch,1988,35:973-983.
[33]Karl H A, Carlson P R. Large sand waves in Navarinsky Canyon head Bearing sea[J]. Geo-Marine Letter,1982,2:157-162.
[34]Karl H A, Cacchione D A, Carlson P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering sea[J].Journal of Sedimentary Petrology,1986,56:706-714.
[35]Faugères J-C, Gonthier E, Mulder T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[J].Marine Geology,2002,182:279-302.
[36]Blumsack S L. A model for the growth of mudwaves in the presence of time-varying currents[J].Deep-Sea Research,1993,40:963-974.
[37]Weatherly G L. On deep-current and hydrographic observations from a mudwave region and elsewhere in the Argentine Basin[J]. Deep-Sea Research,1993,40:939-961.
[38]Flood R D, Giosan L. Migration history of a fine-grained abyssal sediment wave on the Bahama Outer Ridge[J].Marine Geology,2002,182:279-302.
[39]Blumsack S L, Weatherly G L. Observations of the nearby flow and a model for the growth of mudwaves[J].Deep-Sea Research,1989,36:1 327-1 339.
[40]Lewis K B. The 1500 km long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift[J].Geo-Marine Letter,1994,14:19-28.
[41]Howe J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J].Sedimentology,1996,43:219-234.
[42]Hand B M, Middleton G V, Skipper K. Antidune cross-stratification in a turbidite sequence, Cloridorme formation, Gaspe, Quebec[J].Sedimentology,1972,18:135-138.
[43]Piper D J W, Savoye B. Processes of late Quaternary turbidity current flow and deposition on the Var deepsea fan, north-west Mediterranean Sea[J].Sedimentology,1993,40:557-582.
[44]Hand B M. Supercritical flow in density currents[J].Journal of Sedimentary Petrology,1974,44:637-648.
[45]Kolla V, Eittreim S, Sullivan L, et al. Current-controlled, abyssal microtopography and sedimentation in Mozambique basin, Southwest Indian Ocean[J].Marine Geology,1980,34:171-206.
[46]Allen J R L. Sedimentary Structures, Their Character and Physical basis[M]. Amsterdam: Elsevier,1984.
[47]Gao Zhenzhong, He Youbin, Luo Shunshe, et al. Deep-water Tractive Current Deposits: The Study of Internal-tide, Internal-wave, and Contour Current Deposits[M]. Beijing: Science Press,1996:1-22.[高振中,何幼斌,罗顺社,等.深水牵引流沉积——内潮汐、内波和等深流沉积研究[M].北京:科学出版社,1996:1-22.]
[48]Zhang Xingyang, Gao Zhenzhong, Yao Xuegen. Internal-wave deposits in the Northeastern Rockall Trough, North Atlantic Ocean—Reinterpretation of deep-water sediment wave formation[J].Acta Sedimentologuca Sinica,1999,17:464-472.[张兴阳,高振中,姚雪根.北大西洋洛克尔海槽东北部内波沉积——深水大型沉积物波成因的再解释[J].沉积学报,1999,17:464-472.]
[49]Wang Qingchun, He Youbin, He Ping, et al. The formation of large mud-waves on the levees of Toyama deep-sea channel in the Sea of Japan[J].Acta Oceanologica Sinica,2004,26:143-148.[王青春,何幼斌,贺萍,等.日本海富山深海水道堤坝大型泥波的成因[J].海洋学报,2004,26:143-148.]
[50]Wong H K, Lüdmann T, Wollschlager M. Seismic reflection profiling at the northern continental margin of the South China Sea (Sonne-95 Cruise)[C]//Sarnthein M, Pflaumann U, Wang P X, et al, eds. Preliminary Report on Sonne-95 Cruise “Monitor Monsoon” to the South China Sea. Reports, Geol-Palaont Inst Uni Kiel,1994,68: 46-53.
[51]Wang P X, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports South China Sea[R].2000:184.
[52]Shao Lei, Li Xianhua, Wei Gangjian. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D), 2001,44:919-925. [邵磊,李献华,韦刚健,等.南海高速堆积体大物质来源[J].中国科学:D辑,2001,31:828-833.]
[53]Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific deep water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 32: 2005, L05614, doi:10.1029/2004GL021967.  
[54]Shao Lei, Li Xuejie, Geng Jianhua, et al. Deepsea bottom current sedimentation in the northern Southern China Sea[J].Science in China(Series D),2007:37(in press).[邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用[J].中国科学:D辑,2007:37(待刊).]
[55]Bühring, Sarnthein M, Erlenkeuser H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 m.y.: Site 1144, South China Sea[C]//Prell W L, Wang   P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program[J].Scientific Results,2004,184:1-29.

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[6] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[9] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[10] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[11] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[12] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[13] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[14] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[15] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
阅读次数
全文


摘要