地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 359 -366. doi: 10.11867/j.issn.1001-8166.2012.03.0359

所属专题: IODP研究

IODP研究 上一篇    

南海ODP1144站深海沉积牵引体的岩石物理模型研究
汪鹏,钟广法   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2012-02-19 修回日期:2012-02-29 出版日期:2012-03-10
  • 通讯作者: 钟广法(1964-),男,湖南临澧人,教授,博士生导师,主要从事地震、测井解释和沉积学研究. E-mail:gfz@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“南海北部陆坡区深水沉积牵引体的时空分布及形成机制”(编号:91028003)和“根据地震资料研究南海北部陆缘晚新生代海平面变化史”(编号:41076020)资助.

Applications of Rock Physics Models to the Deep-sea Sediment Drift at ODP Site 1144, Northern South China Sea

Wang Peng, Zhong Guangfa   

  1. Wang Peng, Zhong Guangfa
  • Received:2012-02-19 Revised:2012-02-29 Online:2012-03-10 Published:2014-06-10

ODP1144站是南海唯一钻揭深海沉积牵引体的站位,其完整的岩芯和测井资料为开展该沉积牵引体的岩石物理模型研究提供了良好的基础。此项研究对于理解南海深海沉积物中岩性参数与弹性参数间的关系具有重要意义,并可为根据反射地震资料开展定量岩性参数预测提供依据。对现有的深海沉积物岩石物理模型包括Wood悬浮模型、等球体颗粒接触模型、Sun速度—孔隙度关系模型进行了综述。根据岩芯分析资料将1144站深海沉积物的矿物组分简化为粘土矿物、碳酸盐、陆源碎屑和硅质生物4类;其中后3种组分的弹性模量及密度值分别由其代表矿物——方解石、石英及蛋白石的理论值代替,粘土矿物组分的等效弹性模量和等效密度则分别由Voigt-Reuss-Hill平均和体积平均计算得出。将3种岩石物理模型应用于1144站,计算得出深海沉积物的纵波速度并将其与声波测井纵波速度进行比较。结果表明,Sun模型计算结果与实测结果的吻合最好,误差最小;Wood模型所得结果在浅层与实测结果较吻合,在深层与实测结果出现偏差,误差较小;而等球体颗粒接触模型计算结果整体偏高,误差较大。

ODP Site 1144 is the only site for drilling into the sediment drift offshore Dongsha Islands, northern South China Sea. Integration of core and logging data from this site provides a good basis for reconstructing the rock physics model of the deep-sea sediment drift, which is of significance for understanding the relation between the lithological and elastic parameters of the deep-sea sediment and for the quantitative prediction of rock properties by reflection seismic data. The rock physical models for the deep-sea sediments are reviewed, including the Wood′s suspension model, the identical spherical grain contact model, and Sun′s velocity-porosity model for deep-sea sediments. Based on data of core smear slide analysis, the deep-sea sediments at Site 1144 are simplified as consisting of four major mineral components, which are clay minerals, which are carbonate, terrigenous clastic minerals and siliceous minerals, respectively. The elastic moduli and density of the latter three mineral components are substituted by using the corresponding values of their representative minerals, which are calcite, quartz, and opal; and the effective parameters of the clay minerals are determined by using the VoigtReuss-Hill and volume averaging, respectively. All the three rock physics models are applied into the deep-sea sediments at Site 1144 to estimate their P-wave velocity, which is then compared with that from the sonic logging. The result suggests that the estimated result  by  Sun′s model is most suitable to the measured result with the smallest error, that of Wood′s model matches the measured result in the shallow area but deviates from it with relative small error in the deep area, while that of the identical spherical grain contact model is overall higher than measured result  with relative big error.

中图分类号: 

[1]Wang P X,Prell W,Blum P. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 184[R].Texas :Texas A&M University ,2000:24-25.
[2]Wang P X,Zhao Q H,Jian Z M,et al. Thirty million year deep sea records in the South China Sea[J].Chinese Science Bulletin, 2003,48(23):2 524-2 534.
[3]Li Jiaying. Quaternary diatoms from the South China Sea, Leg 184, Site 1144 and their palaeoenvironmental evolution[J].Geological Review,2002,48(5):542-551.[李家英. 南海北部陆坡ODP 1144站位第四纪硅藻及其古环境演变 [J].地质评论,2002,48(5):542-551.] 
[4]Li Jian,Wang Rujian. Paleoproductivity variability of the northern South China Sea during the Past 1 Ma:The opal record from ODP Site 1144[J].Acta Geologica Sinica,2004,78(2):228-233.[李建,王汝建. 南海北部一百万年以来的表层古生产力变化:来自ODP l144站的蛋白石记录 [J].地质学报,2004,78(2):228-233.]
[5]Zheng Fan,Li Qianyu,Chen Muhong. A millennial scale Mid-Pleistocene paleoclimate record of planktonic foraminifera from the northern South China Sea Site 1144[J].Earth Science—Journal of China University of Geosciences,2006,31(6):780-786.[郑范,李前裕,陈木宏. 南海北部1144站中更新世浮游有孔虫的千年尺度古气候记录 [J].地球科学——中国地质大学学报,2006,31(6):780-786.]
[6]Huang Wei,Jian Zhimin,Bühring C. The Millennial-scale climate fluctuations revealed by the records of color reflectance from ODP site 1144 in the northern South China Sea[J].Marine Geology & Quaternary Geology,2003,23(3):5-8.[黄维,翦知湣,Bühring C. 南海北部ODP 1144站颜色反射率揭示的千年尺度气候波动 [J].海洋地质与第四纪地质,2003,23(3):5-8.]
[7]Jin Haiyan,Jian Zhimin. Paleoclimatic instability during the Mid-Pleistocene transition:Implications from foraminiferal stable isotope at ODP Site 1144, northern South China Sea[J].Advances in Earth Science,2007,22(9):914-921.[金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J].地球科学进展,2007,22(9):914-921.]
[8]Wei Gangjian,Liang Xirong,Li Xianhua,et al. Major and trace elemental compositions of the microtektites from ODP Site 1144[J].Geochimica,2002,31(1):35-42.[韦刚健,梁细荣,李献华,等. ODP 1144站钻孔沉积物中微玻璃陨石的元素地球化学特征 [J].地球化学,2002,31(1):35-42.][9]Shao Lei,Li Xianhua,Wei Gangjian,et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D),2001,44(10):919-925.[邵磊,李献华,韦刚健,等. 南海陆坡高速堆积体的物质来源 [J].中国科学:D辑,2001,31(10): 828-833.]
[10]Shao Lei,Li Xuejie,Geng Jianhua,et al. Deep water bottom current deposition in the northern South China Sea[J].Science in China(Series D),2007,50(7):1 060-1 066.[邵磊,李学杰,耿建华,等. 南海北部深水底流沉积作用 [J].中国科学:D辑,2007,37(6):771-777.]
[11]Zhong Guangfa,Li Qianyu,Hao Hujun,et al. Current status of deep-water sediment wave studies and the South China Sea perspectives[J].Advances in Earth Science,2007,22(9):907-913.[钟广法,李前裕,郝沪军,等.深水沉积物波及其在南海研究之现状 [J].地球科学进展,2007,22(9):907-913.]
[12]Wood A W. A Textbook of Sound[M].New York:The MacMillan Co.,1955:360.
[13]Hamilton E L. Elastic properties of marine sediments[J].Journal of Geophysical Research,1971,76(2):576-604.
[14]Hamilton E L. Shear-wave velocity versus depth in marine sediments: A review[J].Geophysics, 1976, 41(5):985-996.
[15]Hamilton E L, Bachman R T, Berger W H, et al. Acoustic and related properties of calcareous deep-sea sediments[J].Journal of Sedimentary Petrology,1982,52(3): 733-753.
[16]Richardson M D,Briggs K B. On the use of acoustic impedance values to determine sediment properties[J].Proceedings of the Institute of Acoustics, 1993, 15(2): 15-23.
[17]Gassmann F. Elastic waves through a packing of spheres[J].Geophysics,1951,16(4):673-685.
[18]Dvorkin J, Nur A. Elasticity of high-porosity sandstone: Theory for two North Sea data sets[J].Geophysics, 1996,61(5):1 363-1 370.
[19]Mindlin R D. Compliance of elastic bodies in contact[J].Journal of Applied Mechanics,1949,16:259-268.
[20]Hashin Z,Shtrikman S. A variational approach to the theory of the elastic behavior of muhiphase materials[J].Journal of Mechanics and Physics Solids,1963,11(2):127-140.
[21]Dvorkin J,Prasad M. Elasticity of marine sediments: Rock physics modeling[J].Geophysical Research Letters,1999,26(12):1 781-1 784.
[22]Ruiz F,Dvorkin J. Rock physics model for deep-sea shallow calcareous sediment with porous grains[J].SEG Annual Meeting Expanded Abstracts,2007,26:1 599-1 603.
[23]Ruiz F,Dvorkin J. Sediment with porous grains: Rock-physics model and application to marine carbonate and opal[J].Geophysics,2009,74(1):1-15.
[24]Berryman J G. Long-wavelength propagation in composite elastic media[J]. Journal of the Acoustic Society of America,1980, 68(B):1 809-1 831.[25]Sun Y F. Core-log-seismic Integration in Hemipelagic Marine Sediments on the Eastern Flank of the Juan de Fuca Ridge[R].Proceedings of the Ocean Drilling Program,Scientific Results,2000.
[26]Sun Y F. On the Foundations of the Dynamical Theory of Fractured Porous Media and the Gravity Variations Caused by Dilatancies[D].New York:Columbia University,1994.
[27]Reuss A. Berechnung der fliessgrenze von mischkristallen auf grund der Plastizitatsbedingungen für einkristalle[J].Zeitschrift für Angewandte Mathematic aus Mechanik,1929,9:49-58.
[28]Voigt W. Lehrbuch der Kirstallphysik[M].Teubner,Leipzig,1928.
[29]Hill R. The elastic behavior of a crystalline aggregate[J].Proceedings of the Physical Society,1952,A65(5):349-354.
[30]Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range[J].Journal of the Acoustical Society of America,1956,28(2):168-178.
[31]Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range[J].Journal of the Acoustical Society of America,1956,28(2):179-191.
[32]Wan S M,Li A C,Clift P D,et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3Ma[J].Marine Geology,2010 (278):115-121.
[33]Mavko G,Mukerji T,Dvorkin J. The Rock Physics Handbook[M]. Cambridge:Cambridge University Press,1998:313-314.
[34]Chaika C. Physical Properties and Silica Diagenesis[D]. California:Stanford University,1998.
[35]Batzle M,Wang Z J. Seismic properties of pore fluids[J].Geophysics,1992,57(11):1 396-1 408.
[36]Alexandrov K S,Ryzhova T V. Elastic properties of rock-forming minerals II layered silicates[J].Bulletin USSR Academy of Science Geophysics,1961,9:1 165-1 168.
[37]Katahara K W. Clay mineral elastic properties[J].SEG Annual Meeting Expanded Abstracts, 1996,15:1 691-1 694.
[38]Han D H. Effects of Porosity and Clay Content on Wave Velocities in Sandstones and Unconsolidated Sediments[D]. California:Stanford University,1987.
[39]Tosaya C A. Acoustical Properties of Clay Bearing Rocks[D]. California:Stanford University,1982.
[40]Castagna J P,Han D H,Batzle M L. Issues in rock physics and implications for DHI interpretation[J].The Leading Edge,1985,14:883-885.
[41]Wang Z,Wang H,Cates M E. Effective elastic properties of solid clays[J].Geophysics,2001,66(2):428-440.
[42]Vanorio T,Prasad M,Nur A. Elastic properties of dry clay mineral aggregates, suspensions and sandstones[J].Geophysical Journal International,2003,155(1):319-326.
[43]Mondol N H,Bjørlykke K,Jahren J,et al. Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial[J].Marine and Petroleum Geology,2007,24(5):289-311.
[44]Mondol N H,Jahren J,Bjørlykke K,et al. Elastic properties of clay minerals[J].The Leading Edge,2008,27(6):758-770.

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[6] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[9] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[10] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[11] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[12] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[13] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[14] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[15] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
阅读次数
全文


摘要